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Research background

PhD at Univeristy of Calabria – Knowrex project, Information Extraction

Limitations: manual configuration bottleneck

Solution proposal: automatic lexicon generation — entity set expansion
problem (having a set of words/things, give more a superset of things of the
same kind) — categorisation? similarity?
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Back to AGH...

Areas of interests and applications

Entity Set Expansion problem: Given a set of objects (words, things, ...)
find a superset of things of the same kind

recommendation engines, decision support systems

How to measure similarity?

Plethora of methods for assessing similarity of thingss

Many levels: similarity of words, phrases, objects, documents, ...

Which method to choose for a given problem and knowledge base?

Which methods are intuitive and understandable yet perform well?

Research objectives

review approaches to comparing concepts (in structured sources)

analyze possibilities of compare instances

implement selected approaches, develop practical tools
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Assumption/focus: Semantic knowledge bases

Semantic networks

semantics given by structure

nodes and edges – universal KR

classes, objects; relations

Modern knowledge graphs
and semantic networks

DBPedia, Wikidata:
triple-based encyclopedias,
knowledge about the world

BabelNet: a multilingual
semantic encyclopedia
integrating information
from several resources

WordNet: a lexical
database covering
taxonomy of concepts,
synonyms, antonyms,
holo/meronyms, ...

Facebook: persons,
interests, activities, social
interactions, communities
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What is similarity?

1 psychological perspective: analyze the the common and disjoint features
of the objects

2 geometric perspective: calculate the “distance” between the concepts:
structure-based metrics
embeddings-based methods
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Survey and classification attempt

Review of 60-70 papers on semantic similarity

Selection: based on the attributes, such as: description, citations,
references, etc. ... we identified “core”, prominent, influential methods
and/or methods visibly different from others

An attempt to classify and model the methods landscape domain
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Semantic Similarity Methods Diagram (Ontology)
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Semantic Similarity Methods Diagram (Ontology)
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Bibliometric analysis

Trends in development of new methods over time
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Tool supporting the analysis

“Historical atlas” of research methods:

Data: ontology of methods, in json

Two visualization methods: graph-base and chronological

Universal: for analyzing any domain

1..*1..*

proposed in

1..11..1
influenced by

Method

+ name: String
+ description: String

1..*1..*

Author

+ name: String

is author Article

+ title: String
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Visual “guide” about similarity metrics

Figure: See https://gitlab.com/SzymonMajk/chartas-front.
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“Historical atlas” of research proposals

Figure: See https://gitlab.com/SzymonMajk/chartas-front.
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Summary (of the first thread)

Research questions

How can we measure similarity? What is the state-of-the-art? What methods are
best for which situations? How to support literature research?

Obtained results

Review and classification + modeling of the domain

Result: a guide for newcomers to the domain

MSc students studying the subject at AGH UST

Paper
“Tracing the Evolution of Approaches to Semantic Similarity Analysis”, by W.T.Adrian,
S.Skoczeń, S.Majkut, K.Kluza, A.Ligęza, presented at IC3K / KEOD conference
(November 2020)
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Reviewing metrics of semantic similarity

Looking for a measure that is:

understandable and intuitive

based on a structured knowledge base

“explainable” (n-dimensional vectors were not what we focused on)
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Yang & Powers similarity measure

An edge-based method basing on graph traversal (way of traversal as well as
path calculation depends on a variant)

To compute the similarity we use the following formula:

Sim(c1, c2) =

{
αt

∏dist(c1,c2)
i=1 βt i if dist(c1, c2) < γ

0 if dist(c1, c2) ≥ γ

where:
c1, c2 denotes the concepts being compared
α is the link-type factor
β is the depth factor
γ is path length threshold
t ∈ {hh, hm} denotes relation type (hypernym-hyponym, holonym-meronym)
dist(c1, c2) is a number of edges in the path between both concepts
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Creation of graph for Yang & Powers metric

There are 6 variants overall
Traversal: Uni-Directional and Bi-Directional Search
Result: max, sum, mean

We implemented Bi-Directional traversal and maximal value (SimmaxB )
To create a graph we start with all meanings of the given words
Algorithm recursively traverse graph finding all
hypernyms/hyponyms/holonyms/meronyms of words until it will find
common node (both traversal processes find the same node).

Example

For the pair (dog,animal):

t = hh, αt = 0.7, βt = 0.85

sim = 0.7 ·
2∏
1

0.85 = 0.595
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Alvarez & Lim similarity measure

An edge-based method (considers the shortest path between words in the
taxonomy) - but not only
Three main components are taken into account to compute the distance:

dist (w1,w2) = argmin
(i,j)

 pl (c1i , c2j)
·dnca (c1i , c2j)
· (1 + gloss (c1i , c2j))


where:

ci j denotes the j-th meaning of the i-th word
pl(c1i , c2j ) is the path length between c1i and c2j
dnca

(
c1i , c2j

)
= 1− depth(c)

maxdepth

depth(c) is the depth of the concept c in the created graph

gloss
(
c1i , c2j

)
= 1−

∣∣∣g1i ∩g2j

∣∣∣
max

(
|g1i |,

∣∣∣g2j ∣∣∣) g1i , g2j - descriptive definitions of concepts

distance to similarity: sim(w1,w2) = exp(−dist(w1,w2)
b ), b set experimentally

Gloss

dog = ”a common animal with four legs, especially kept by people as a pet”

pet = ”an animal that is kept by people as a companion and treated kindly”
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Creating a graph for Alvarez & Lim metrics

The algorithm inserts into the graph hypernyms of words found in the path
between the given concept and a root in WordNet

For each concept r ∈ {hyp(c) ∪mer(c) ∪ hol(c)}, c ∈ {s(w1) ∪ s(w2)},
where s is a set of synonyms and hyp,mer , hol are the sets of hyponyms,
meronyms and holonyms respectively, we recursively add the hypernyms
existing in the path from r to root.

Edge weight: weight(c1i , c2j ) = 1− depth(c1i )+depth(c2j )

2∗maxdepth

Example

For the pair (dog,animal):

pl = 1.4; depth = 5; gloss = 1

dist = 1.4∗(1− 5
20

)∗(1+1) = 2.1

sim = exp(
−2.1

4
) ≈ 0.592
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Implementation

Python 3, libraries: numpy, NLTK, networkx, plotly

Simple GUI made in PyQt

The metrics are extended to take into consideration also the instance similarity
by the use of instance hypernym relations while creating a graph.
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Visualization possibilities
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Experiments over WordSim353 dataset

results better than most of the knowledge-based metrics

worse than hybrid and embedding-based metrics

Word 1 Word 2 SimmaxB SSA

tiger cat 8.5 8.95
tiger tiger 10 10
tiger animal 4.17 3.79
plane car 5.95 6.72
train car 8.5 5.24

money cash 5.95 6.23
king queen 9.0 10

football soccer 8.5 9.22
vodka brandy 5.95 6.66
food fruit 4.17 3.56

money dollar 2.92 4.1

Tests on our “instance dataset”:

Instance 1 Instance 2 SimmaxB SSA

Warsaw Cracow 5.95 8.13
Roma Vienna 5.95 7.59
Roma Budapest 5.95 7.59
Roma Hamburg 4.16 6.07

Newton Galileo 4.17 4.69
Newton Mozart 0.7 0.8
Vistula Thames 5.95 7.12
Vistula Balaton 2.92 3.14
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Summary (of the second thread)

Research questions

How can we measure similarity of instances in a graph-oriented knowledge base
so it is human-readable, intuitive, and accurate?

Obtained results

Implementation of selected methods and extension to instance similarity

Practical (educational) tool with visualization options

First results and intuitions towards metrics combining structure of the
knowledge base and vector representation learning

Paper
“Adapting selected knowledge-based similarity metrics for instance similarity”, by
W.T.Adrian, A. Bugaj, P. Swędrak, presented at LENLS17 workshop (Nov. 2020)
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Conclusion

Main results

Analysis and classification of semantic similarity metrics

Tool development: historical atlas of methods, a tool calculating similarity
between words, other implemented metrics and experiments

2 conference/workshop papers, MSc students involved in the topic

Challenges

Keep up-to-date about the state-of-the-art and new proposals

Embeddings methods!

Plans for future

Experiments on richer knowledge bases and selected problems

Towards new metrics for semantic similarity combining structure-based and
embeddings-based methods
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The End

Thank you for your attention!
Do you have any questions?

Contact me at: wta@agh.edu.pl
Contact us at: kraken@agh.edu.pl
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