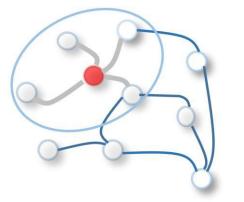
ETH zürich

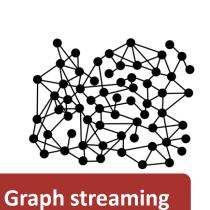
MACIEJ BESTA, TORSTEN HOEFLER Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

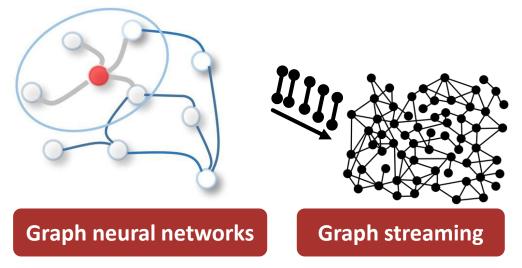
Overview of My Research: High-Performance Irregular Workloads & Interconnects

all the second and the

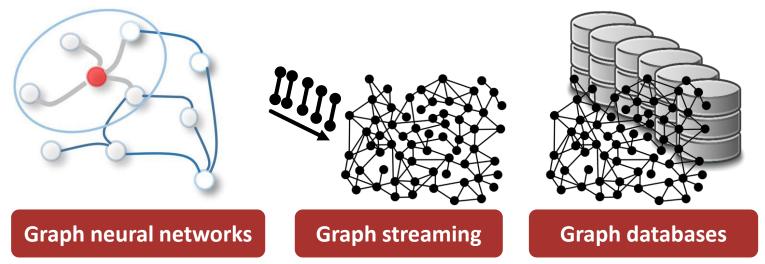
Overview of My Research: High-Performance Irregular Workloads & Interconnects


State State

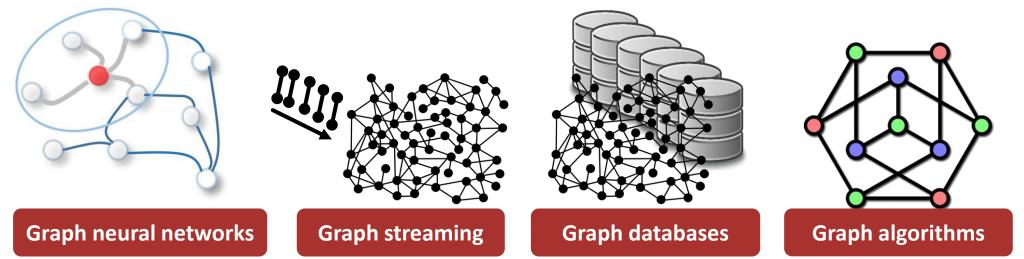

Graph neural networks


Overview of My Research: High-Performance Irregular Workloads & Interconnects

Graph neural networks



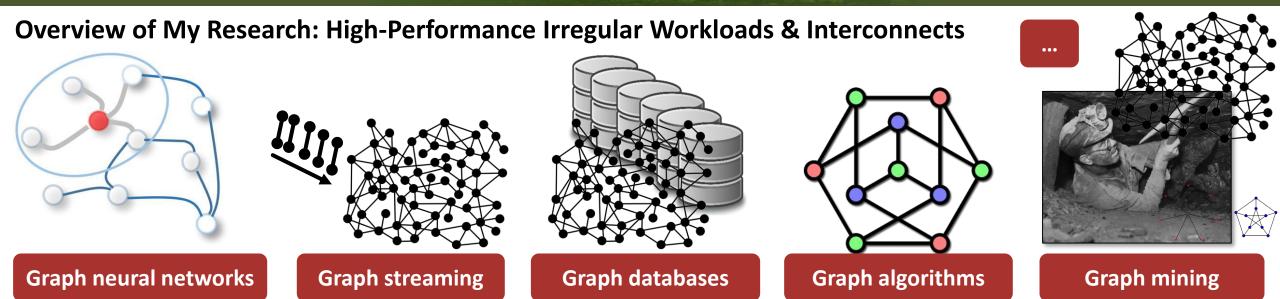
Overview of My Research: High-Performance Irregular Workloads & Interconnects


Overview of My Research: High-Performance Irregular Workloads & Interconnects

2

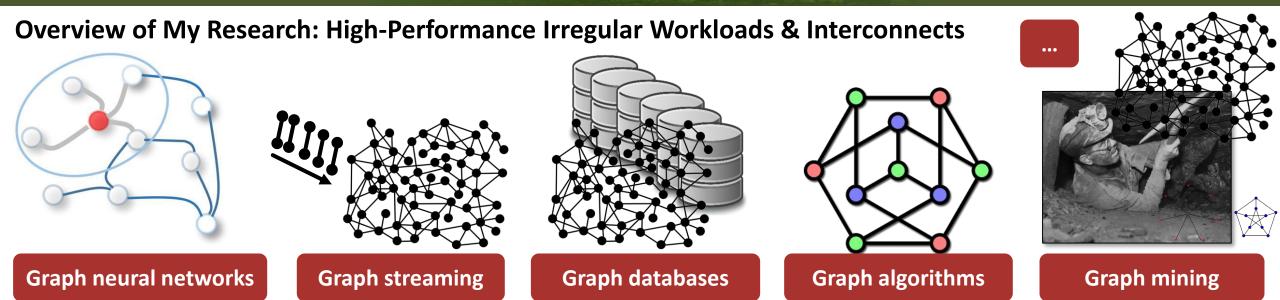
Overview of My Research: High-Performance Irregular Workloads & Interconnects

a start

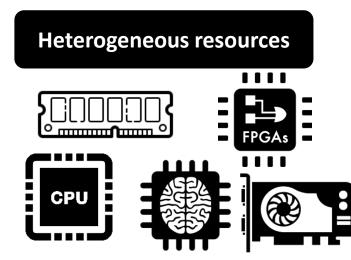


spcl.inf.ethz.ch

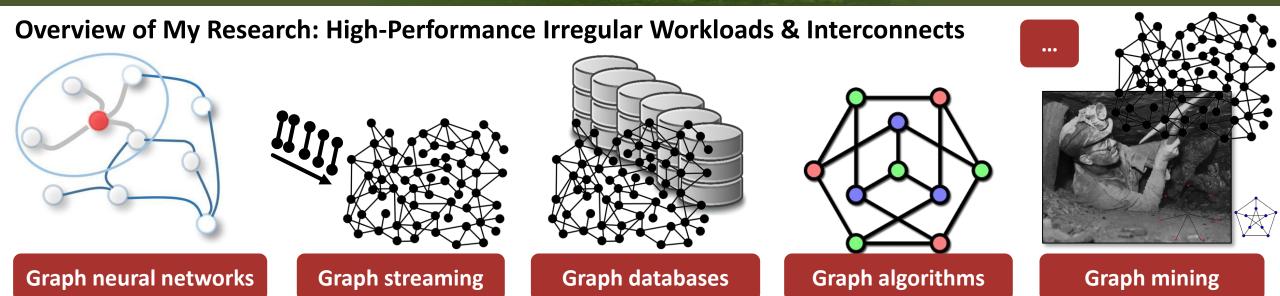
Overview of My Research: High-Performance Irregular Workloads & Interconnects Image: Contract of the search of the sear


The second

spcl.inf.ethz.ch

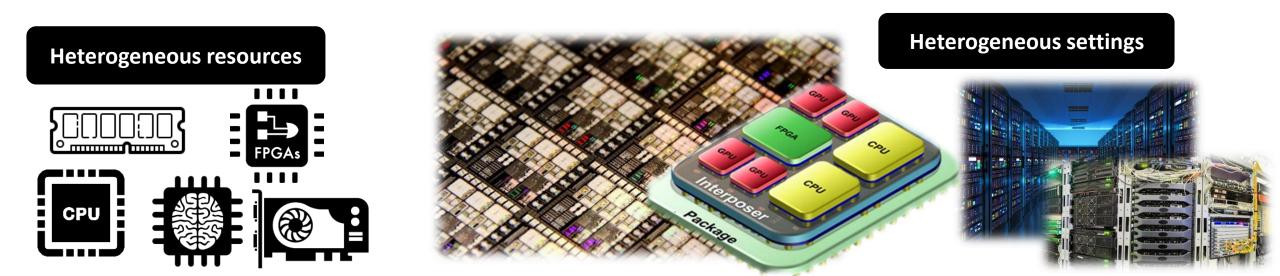


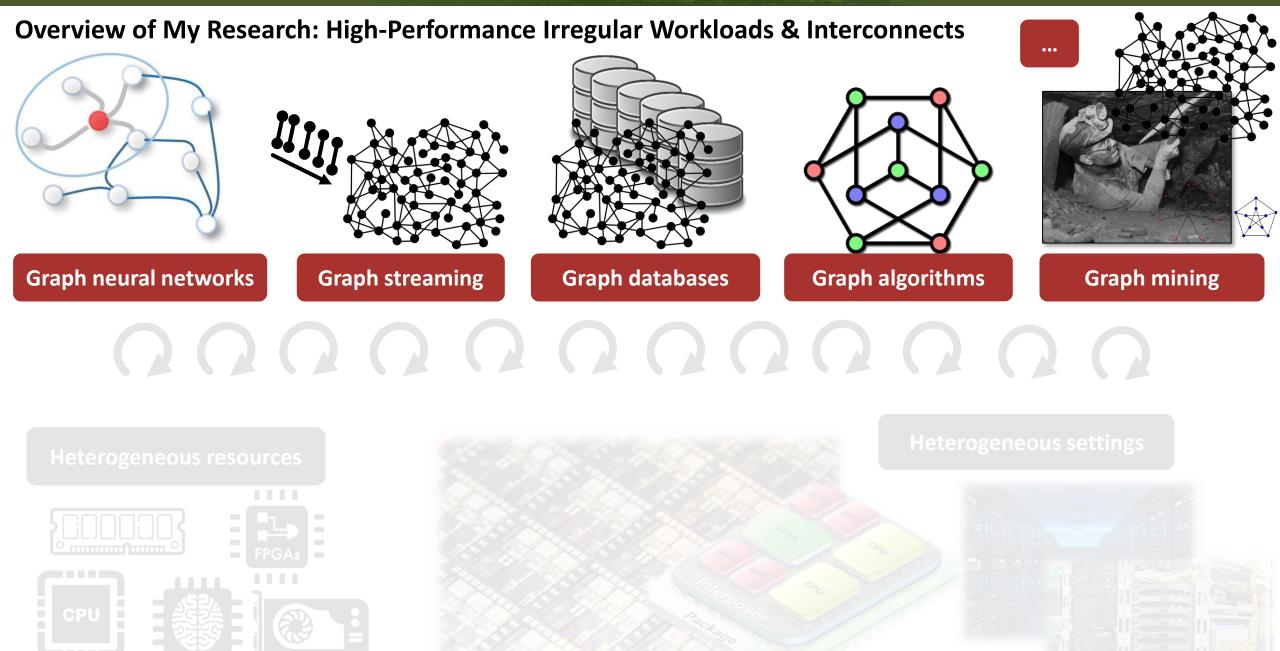
The second


spcl.inf.ethz.ch

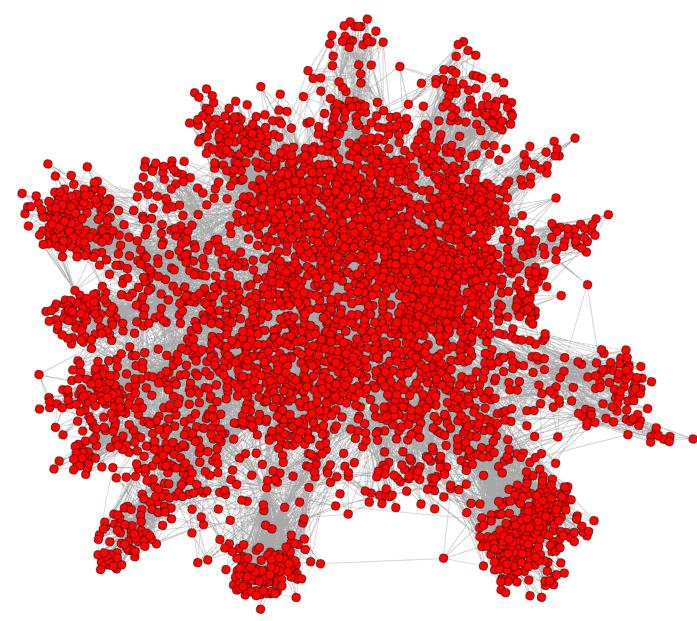

The second

spcl.inf.ethz.ch

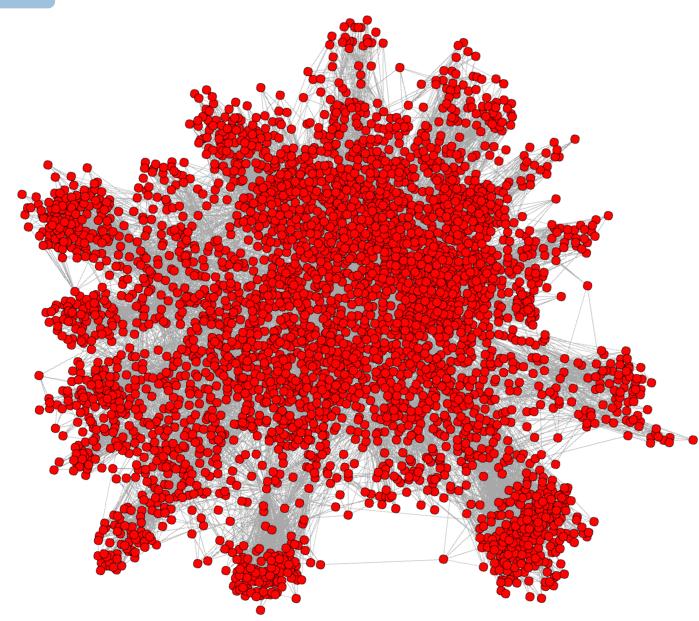

a l'arte a series and


spcl.inf.ethz.ch

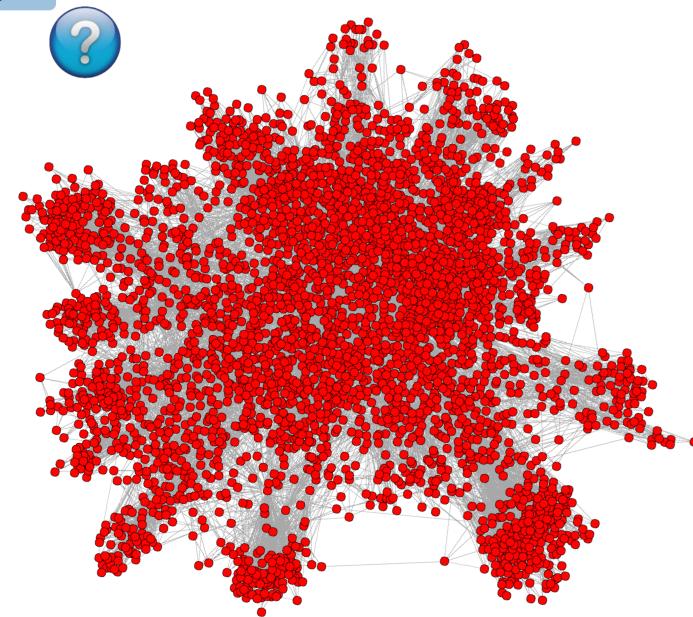
all the second



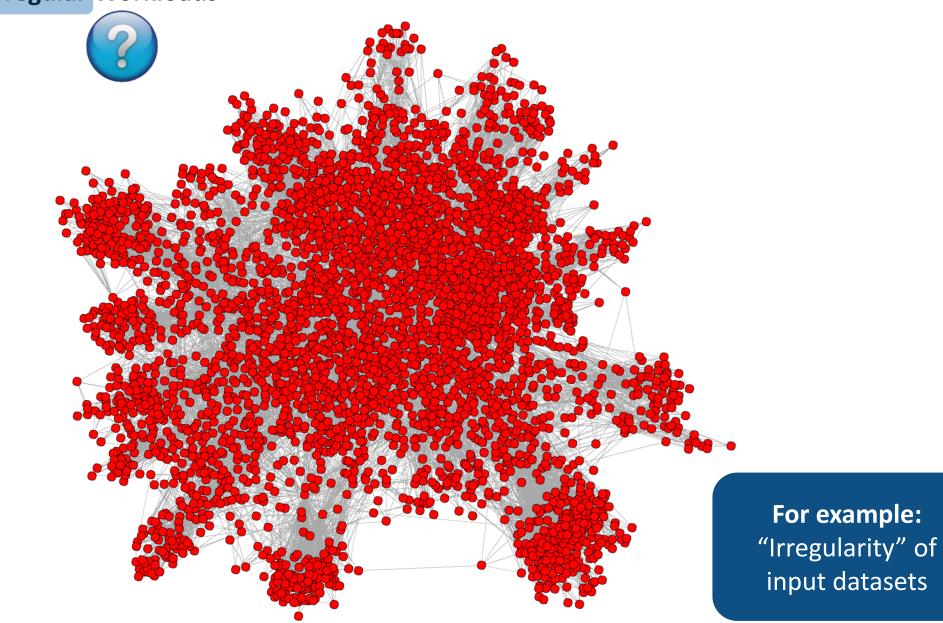
spcl.inf.ethz.ch


and all the second second

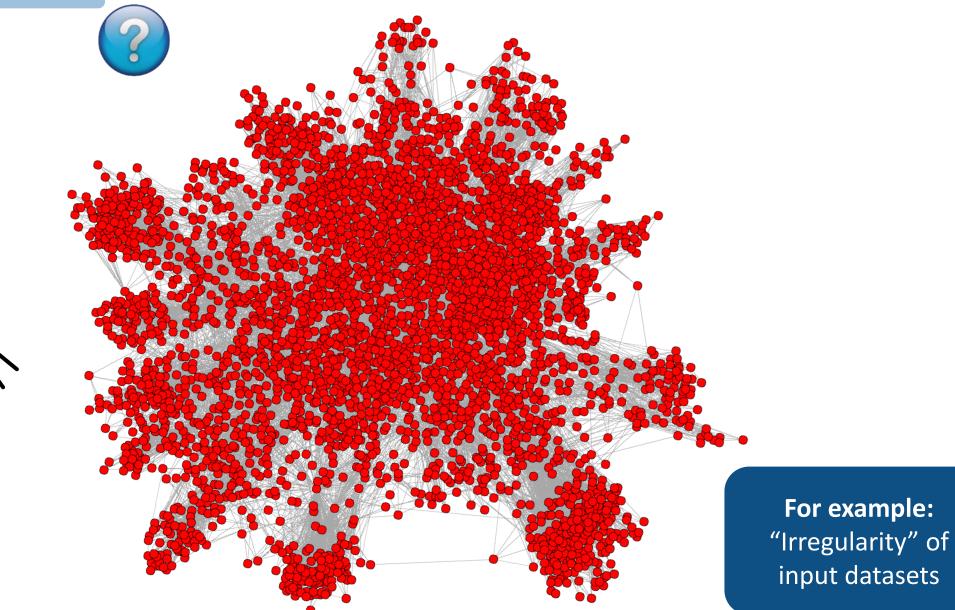
High-Performance Irregular Workloads



High-Performance Irregular Workloads

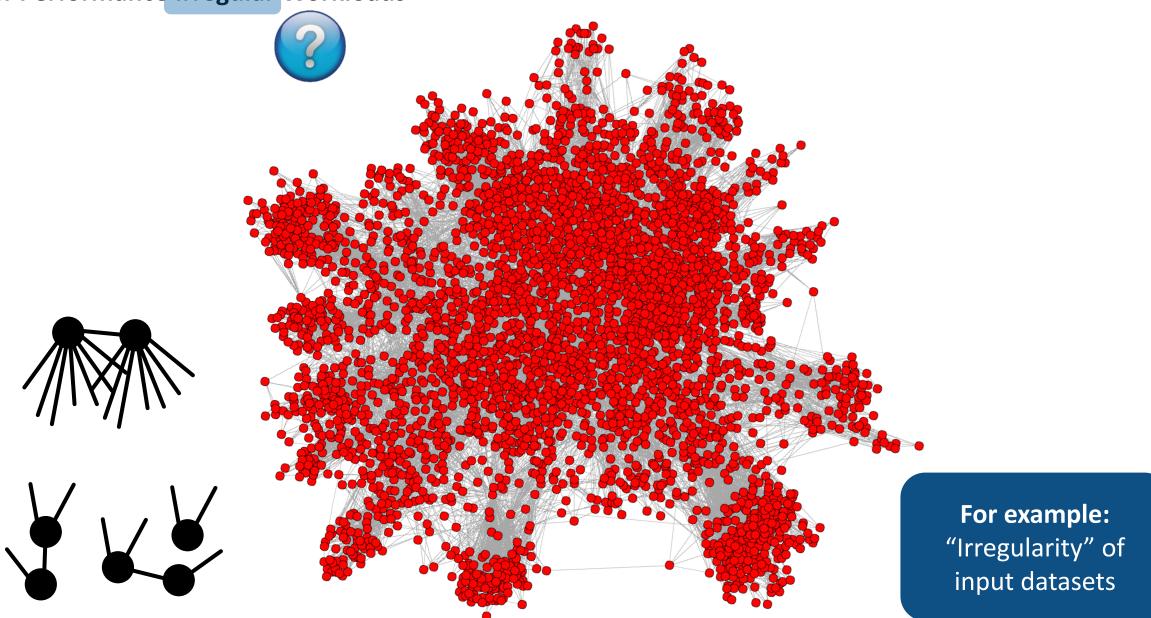


High-Performance Irregular Workloads

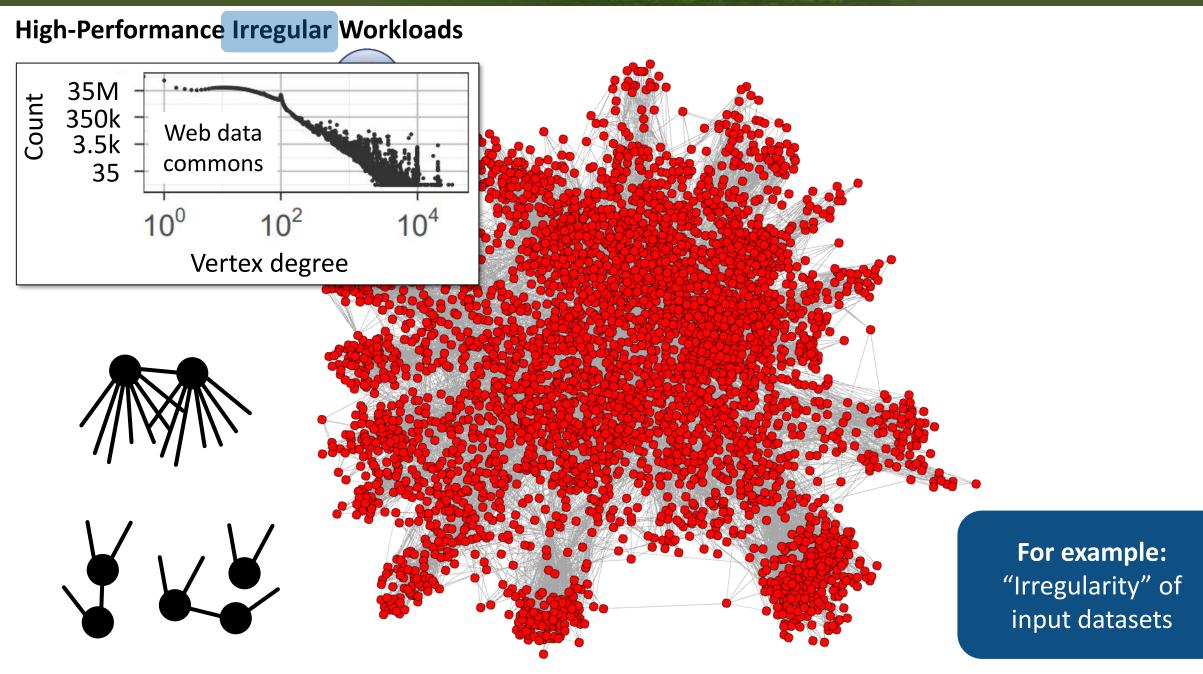


Notes and an and a second

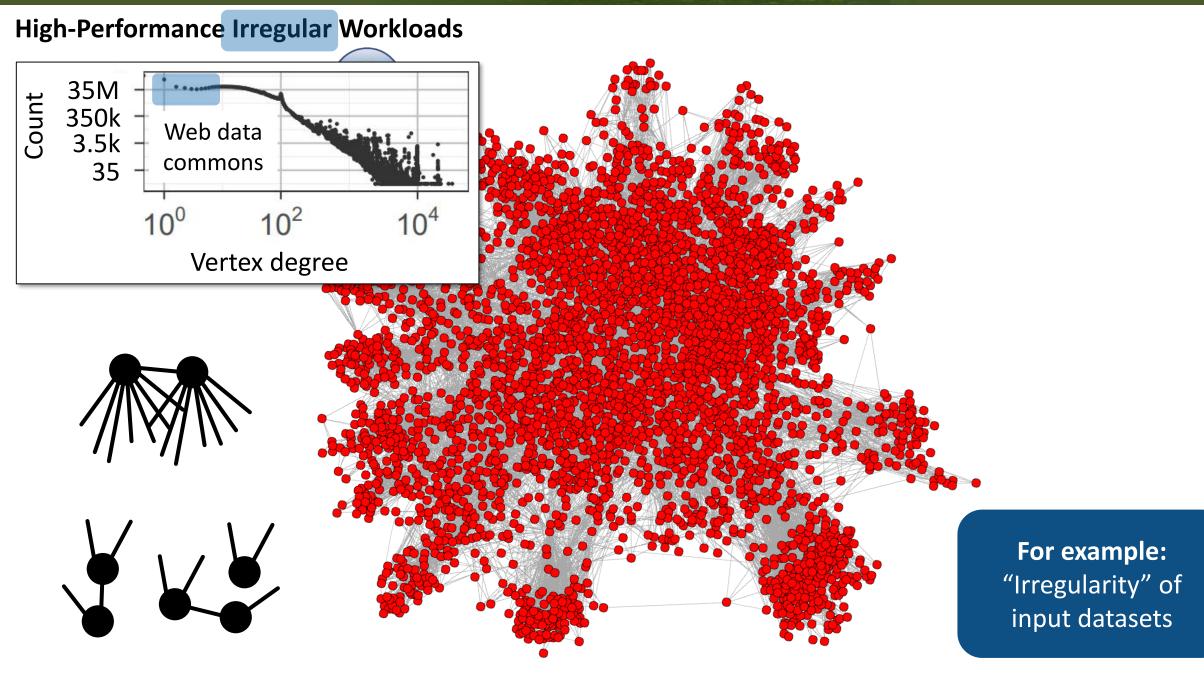
High-Performance Irregular Workloads

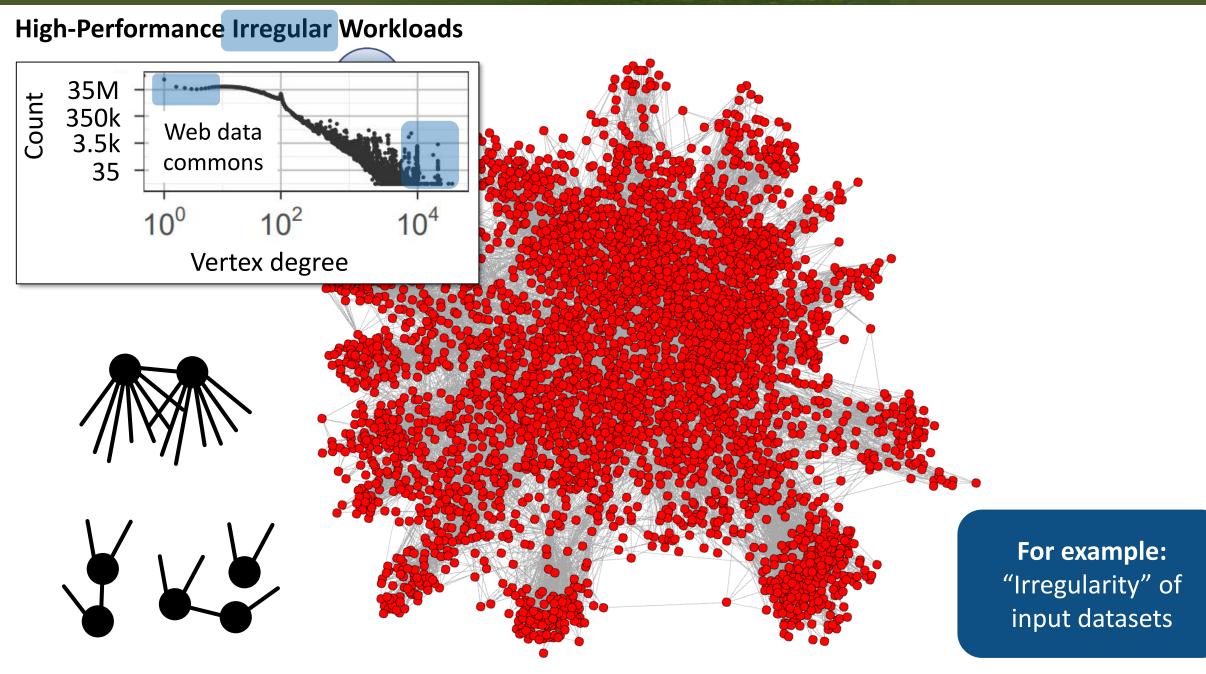


High-Performance Irregular Workloads


3

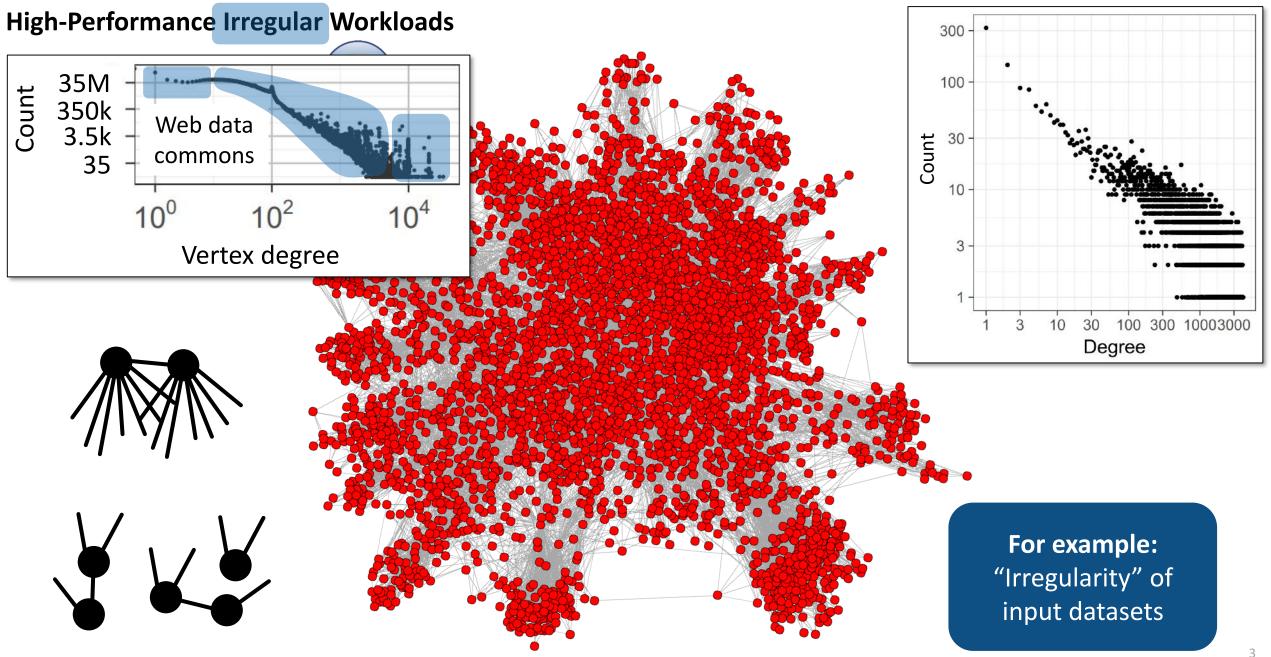
High-Performance Irregular Workloads


and the second


The second second

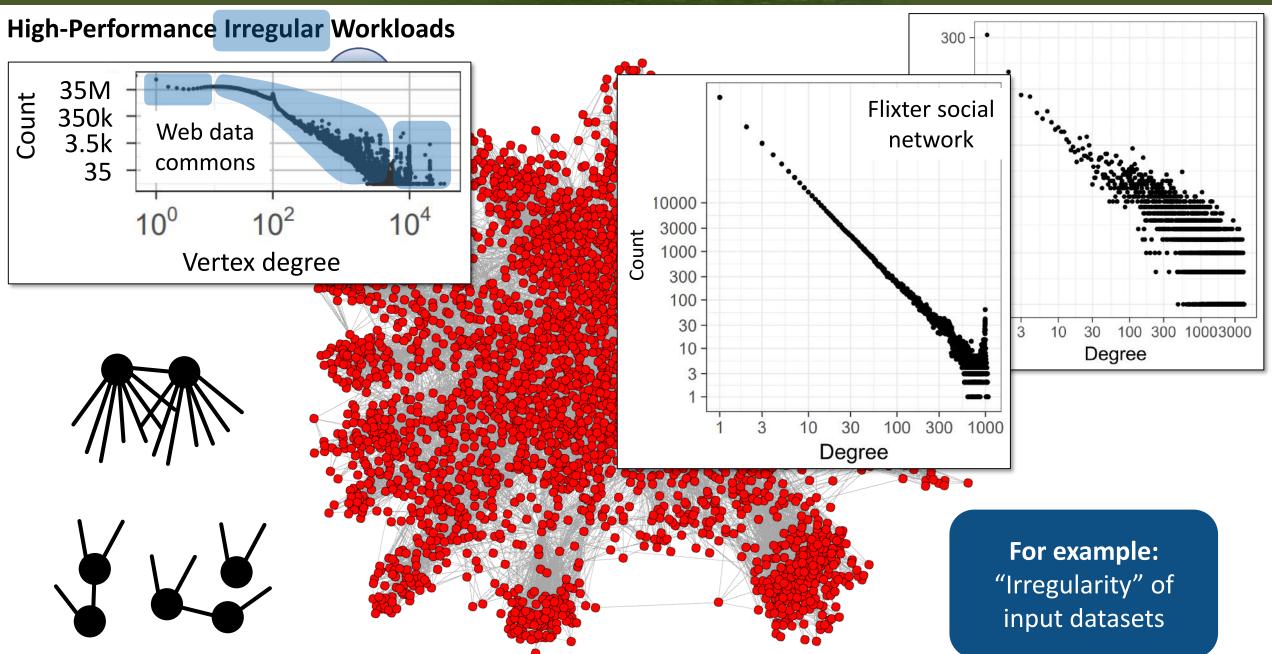
The second second

The sector of the sector



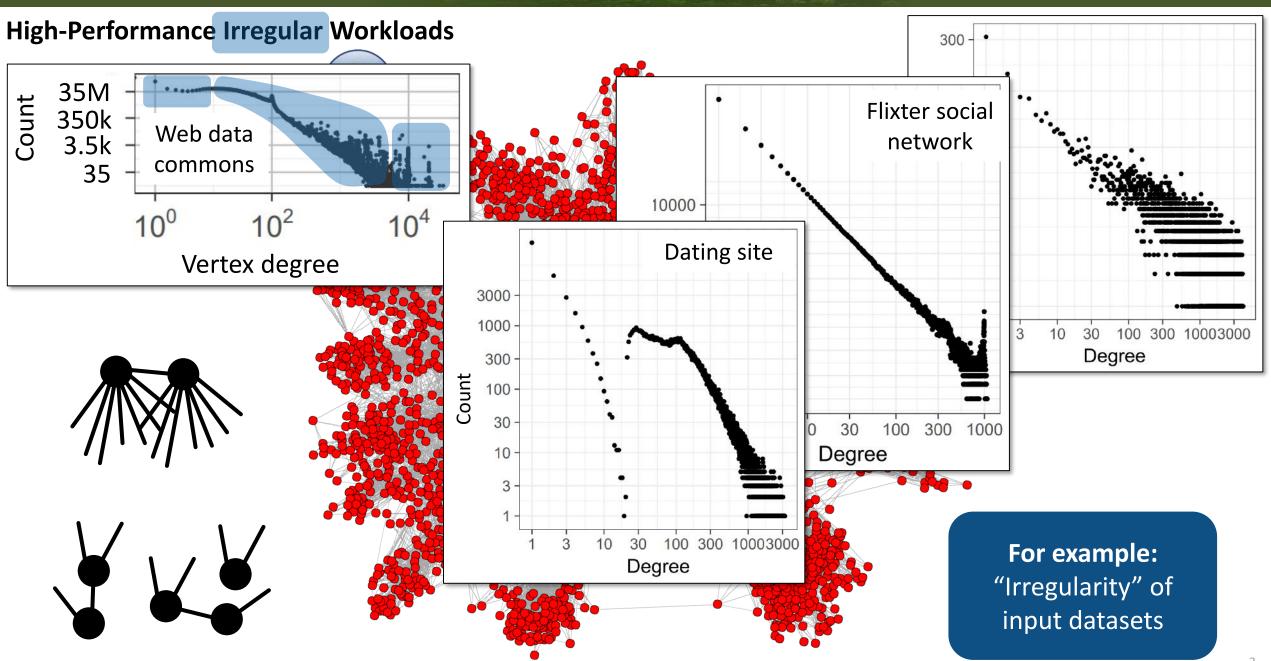
The second second

spcl.inf.ethz.ch **ETH** zürich 🍠 @spcl_eth

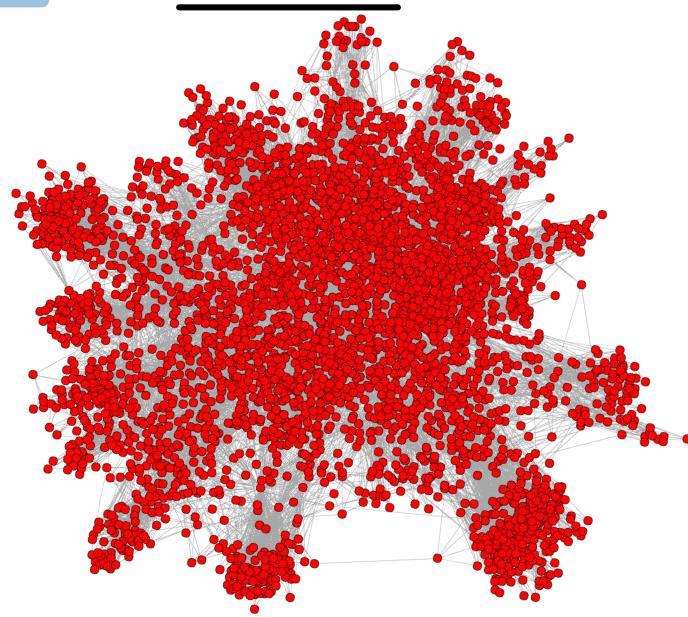


A CONTRACTOR OF THE OWNER

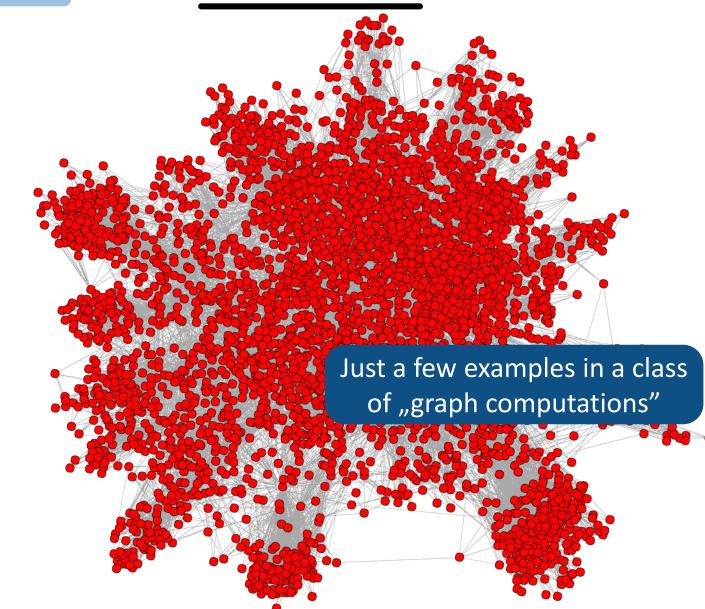
spcl.inf.ethz.ch

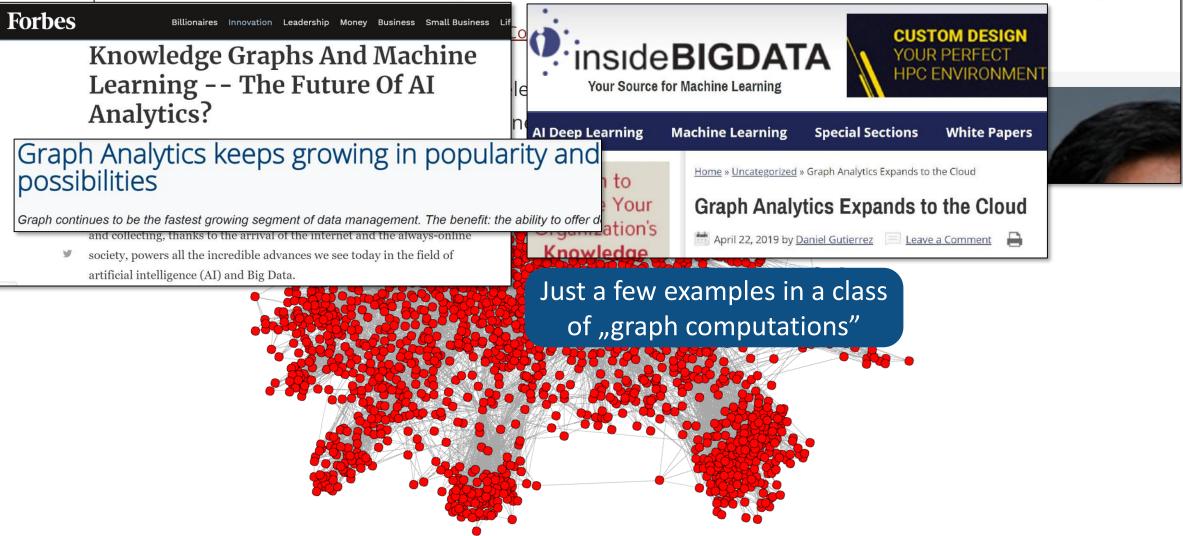

ETH zürich

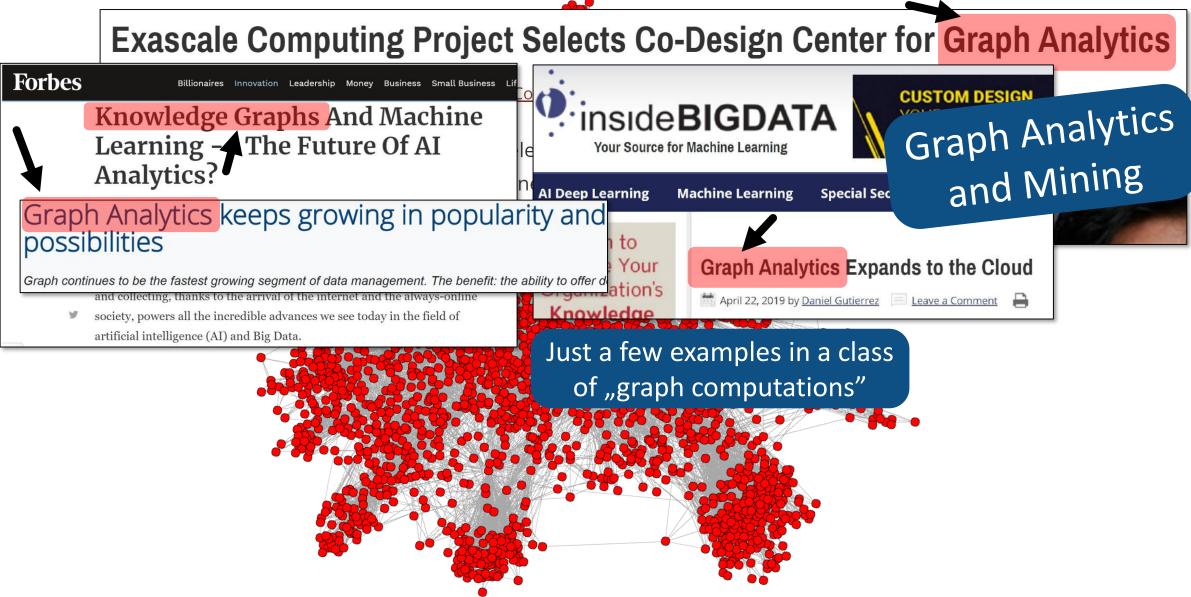
The second s

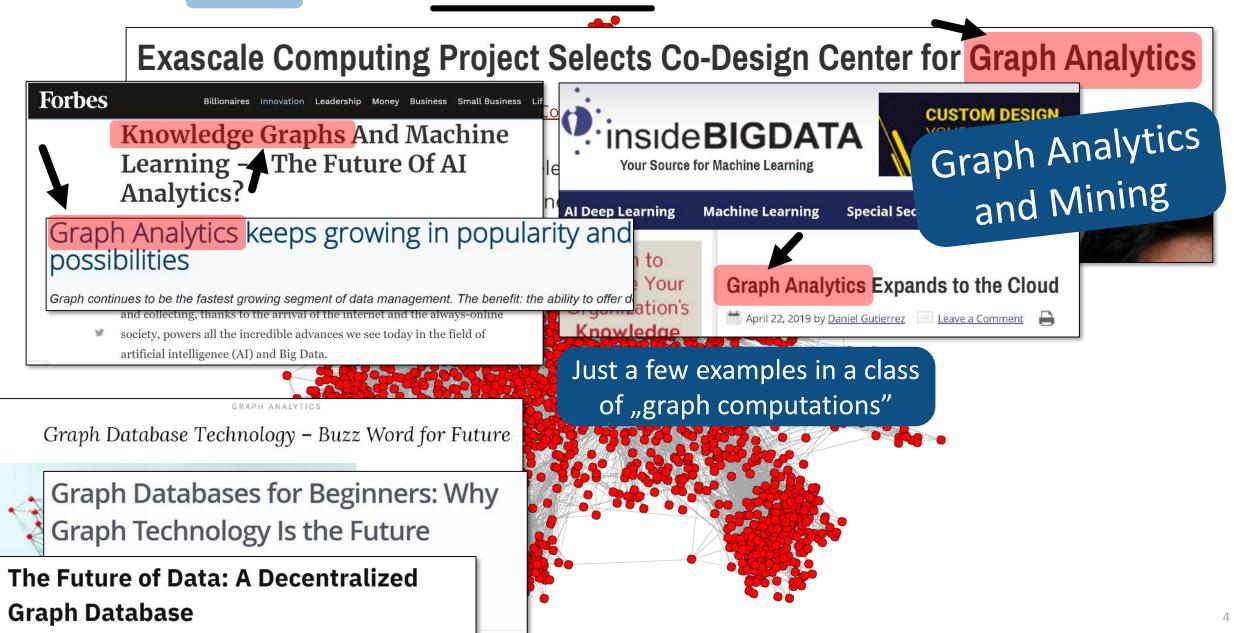


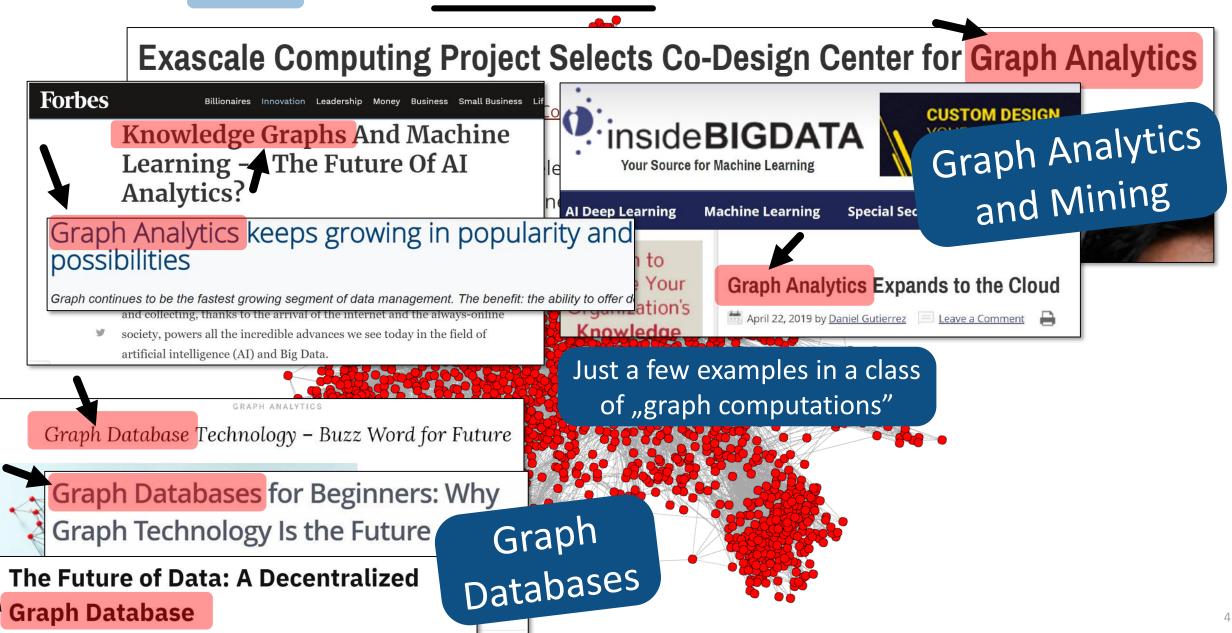
spcl.inf.ethz.ch

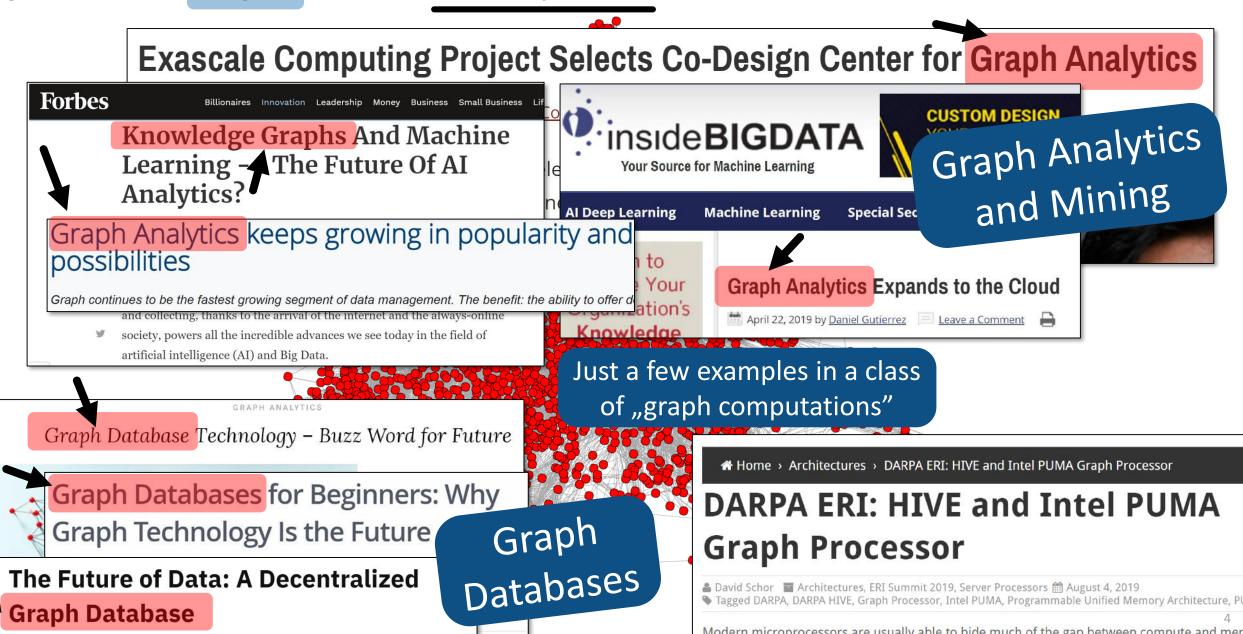

The second second second

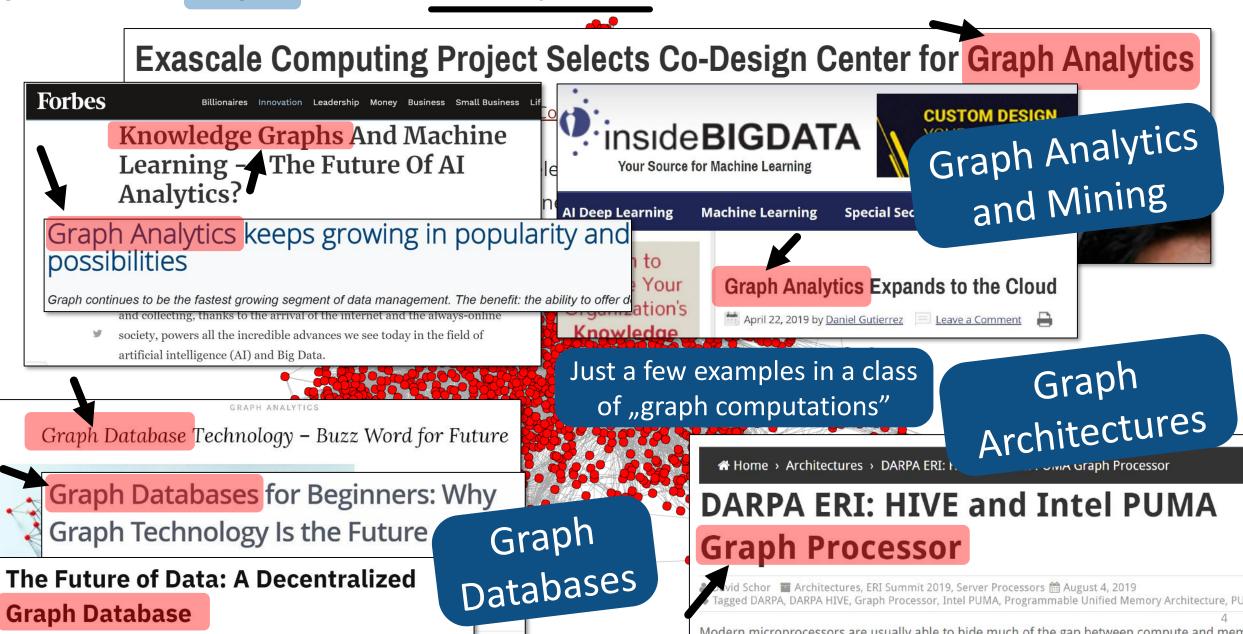

and the second second

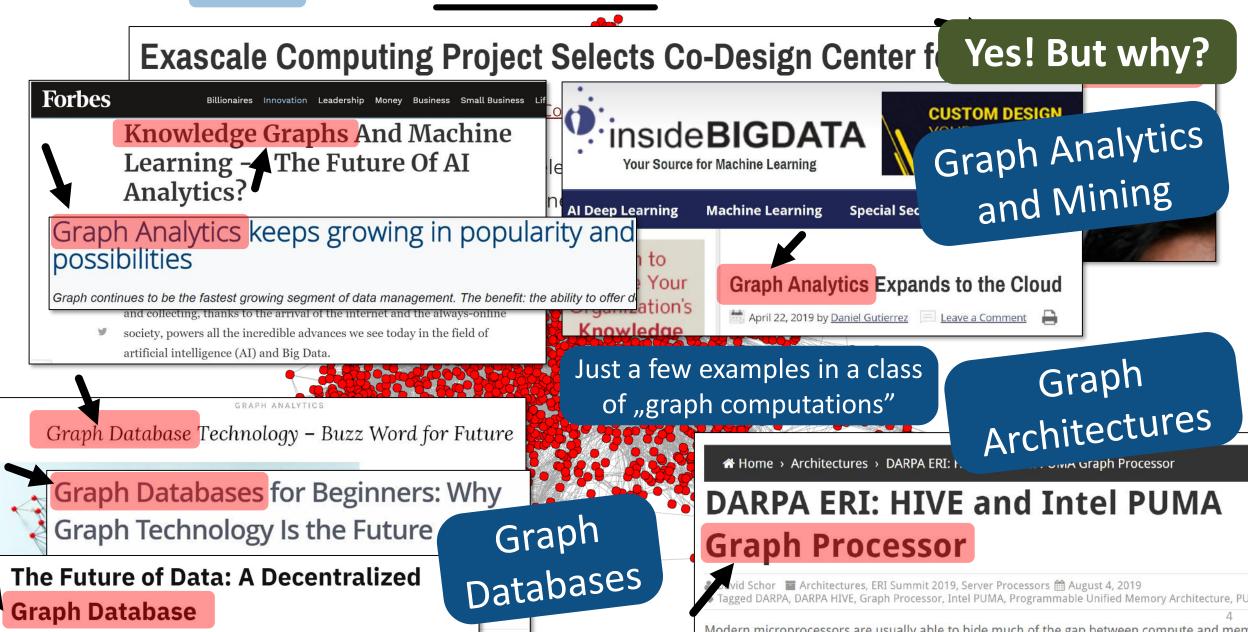



Exascale Computing Project Selects Co-Design Center for Graph Analytics

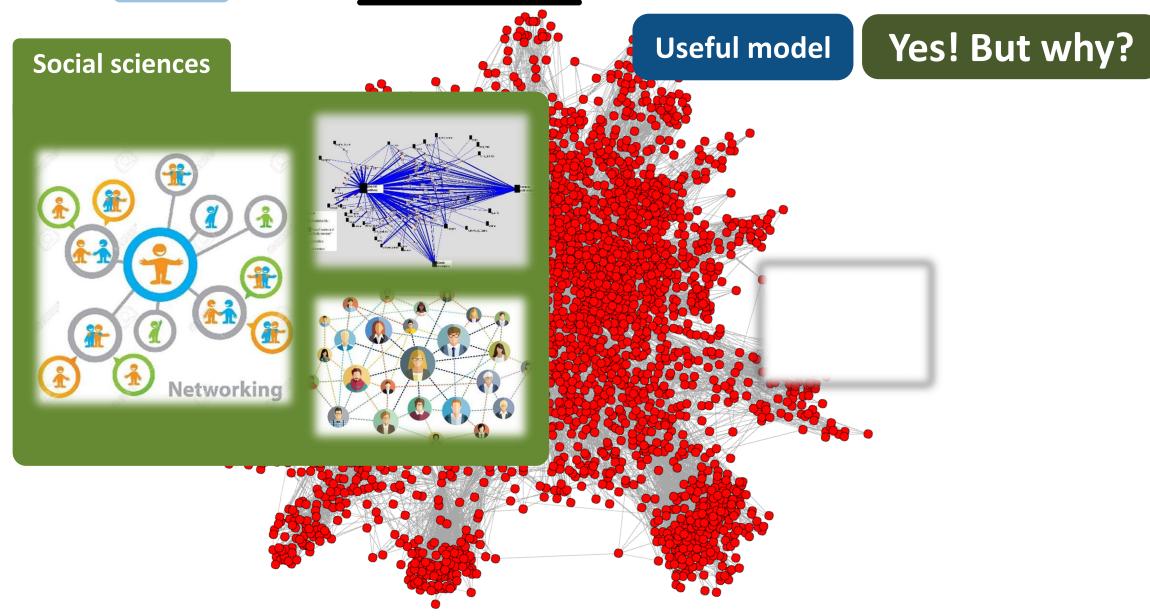


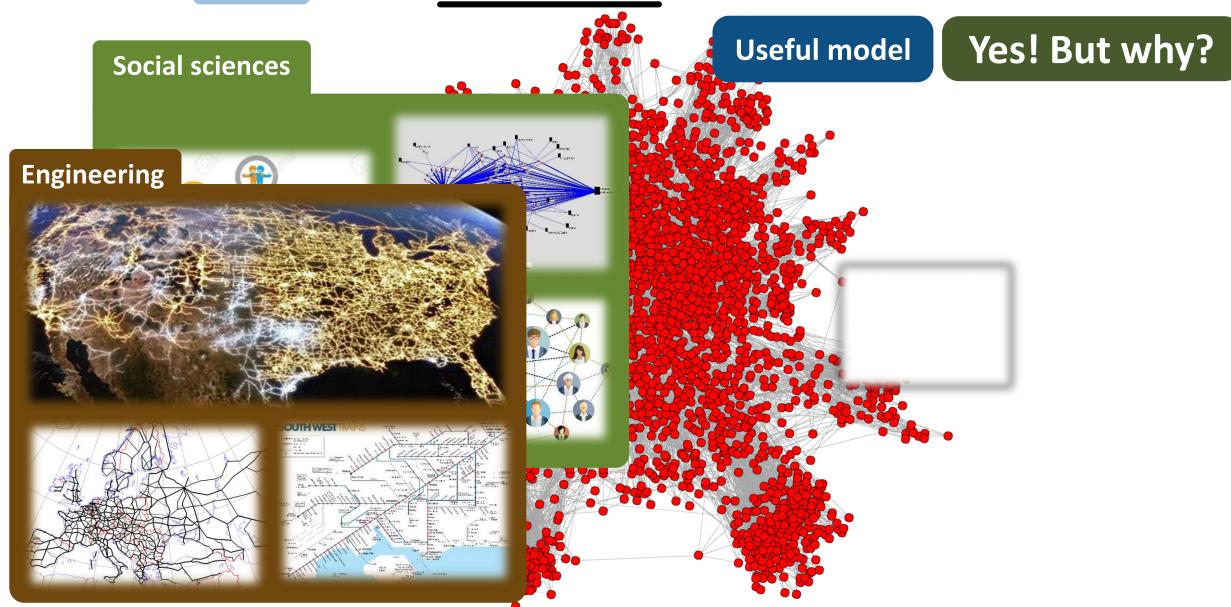




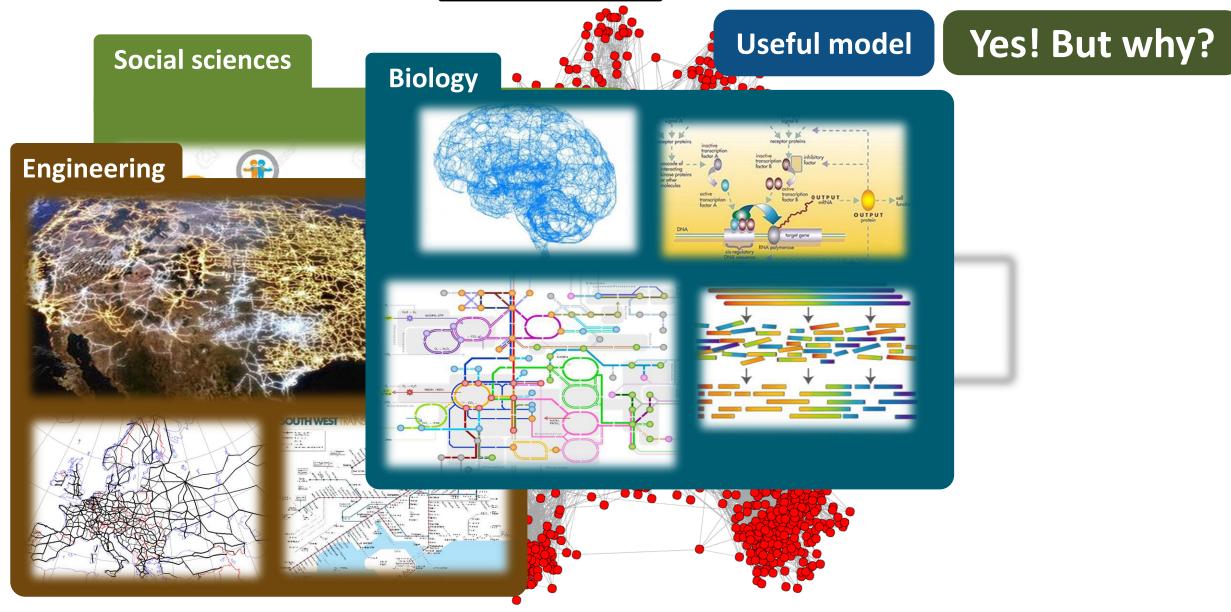




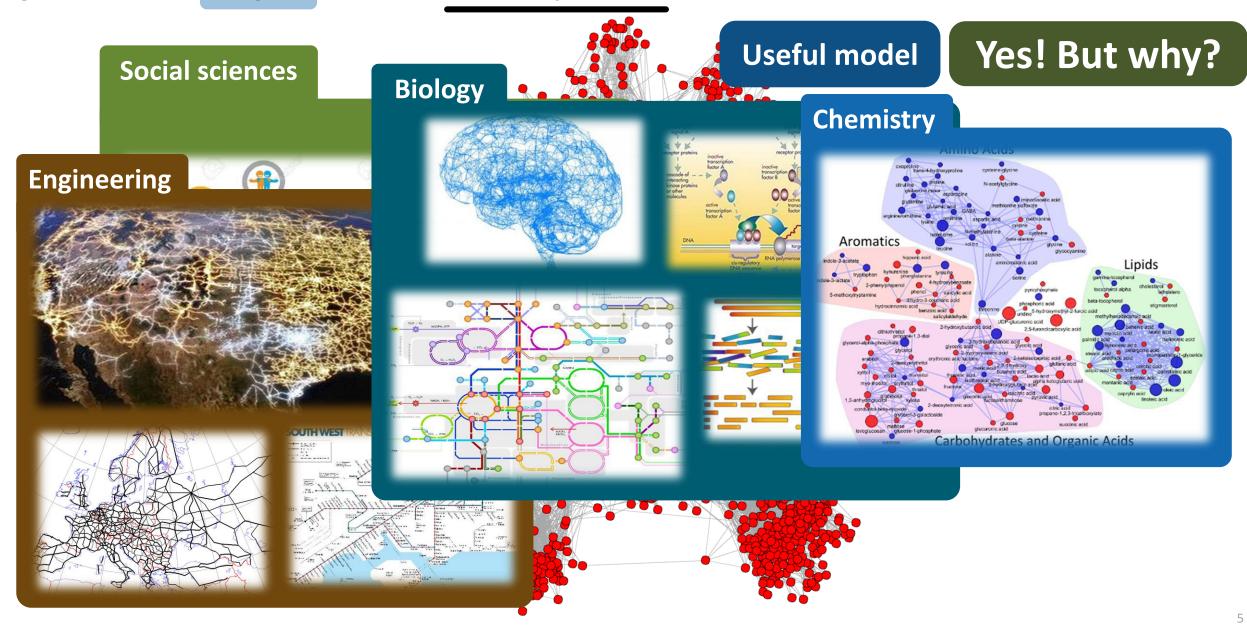


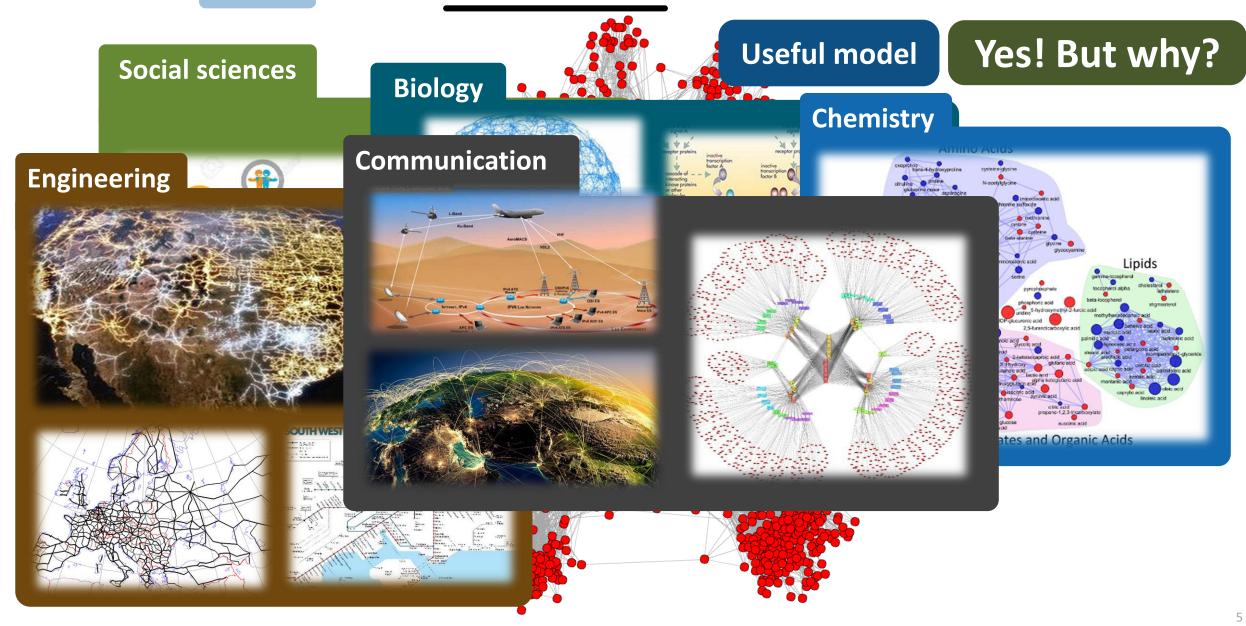

the second

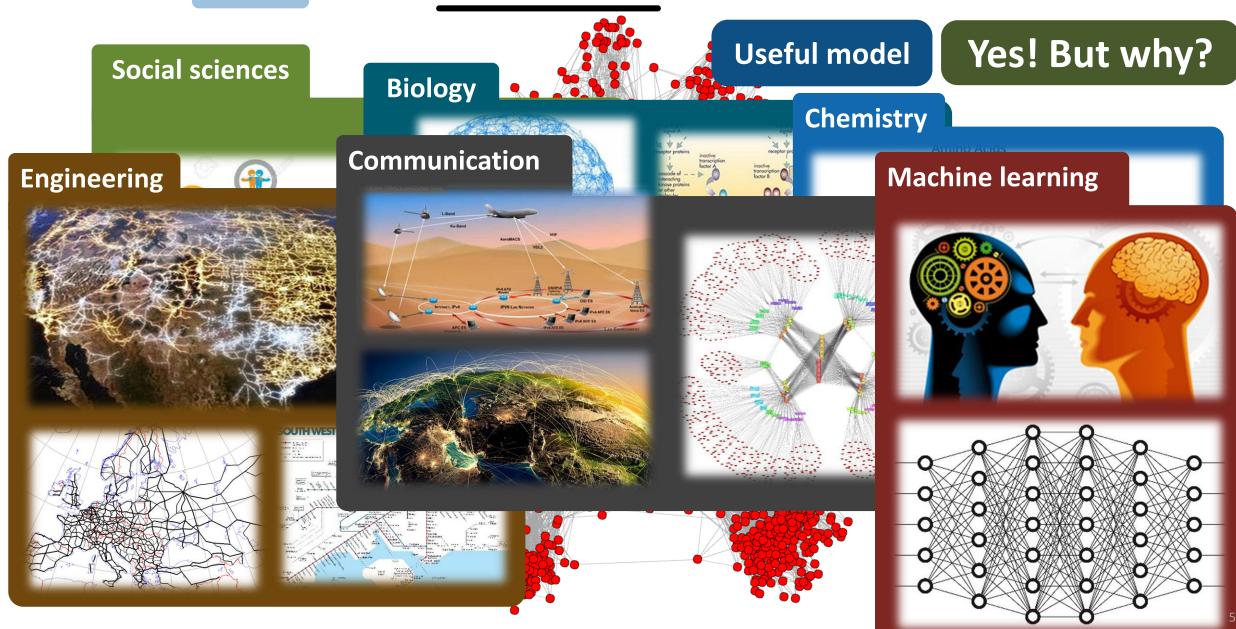
the second

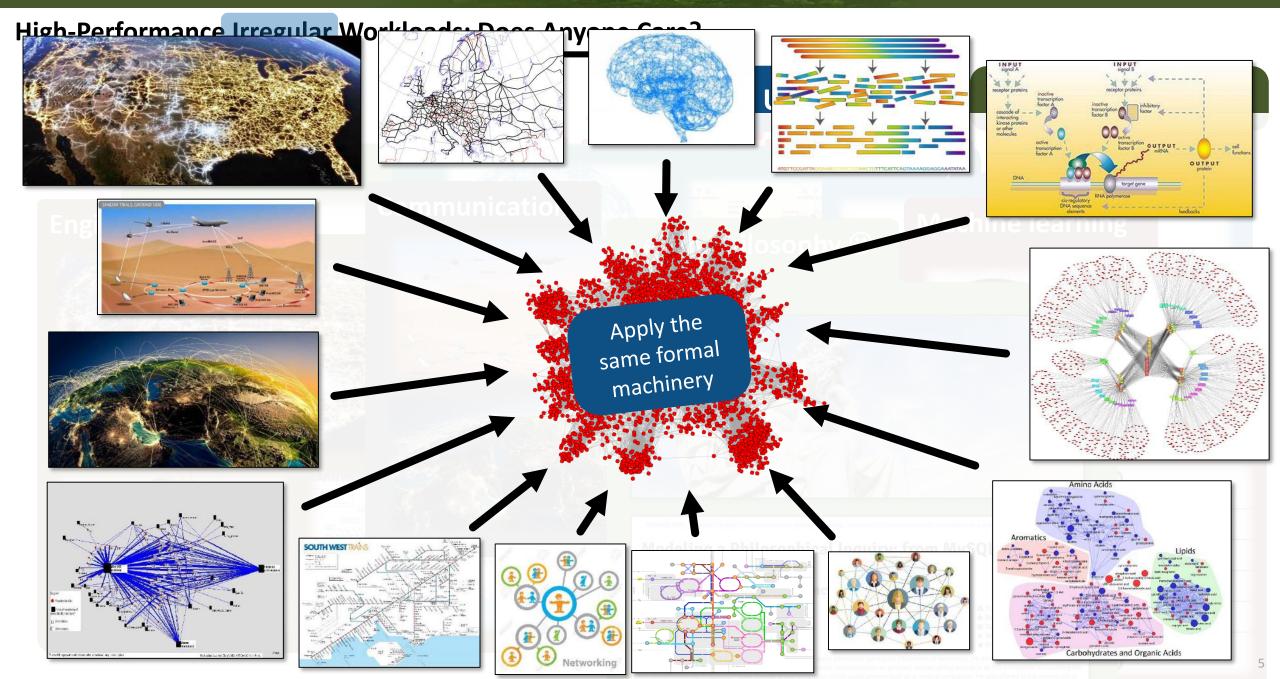


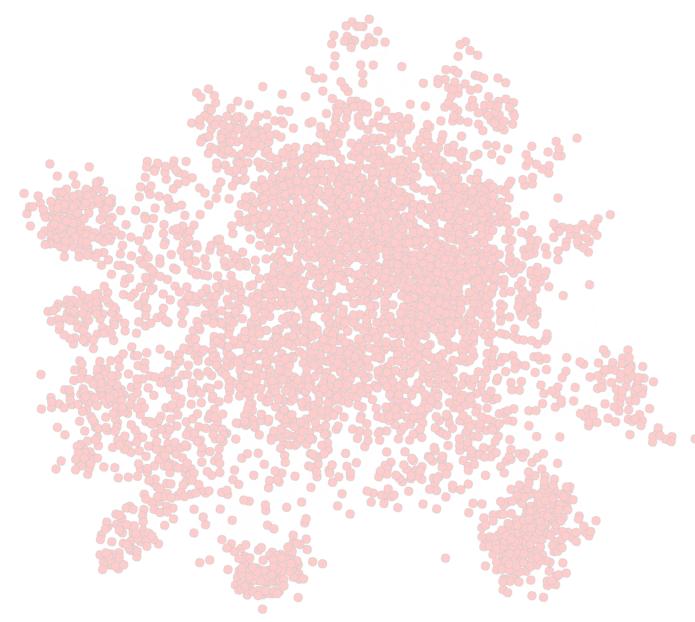
1 1 m


spcl.inf.ethz.ch


A REAL PROPERTY AND A REAL PROPERTY AND


spcl.inf.ethz.ch

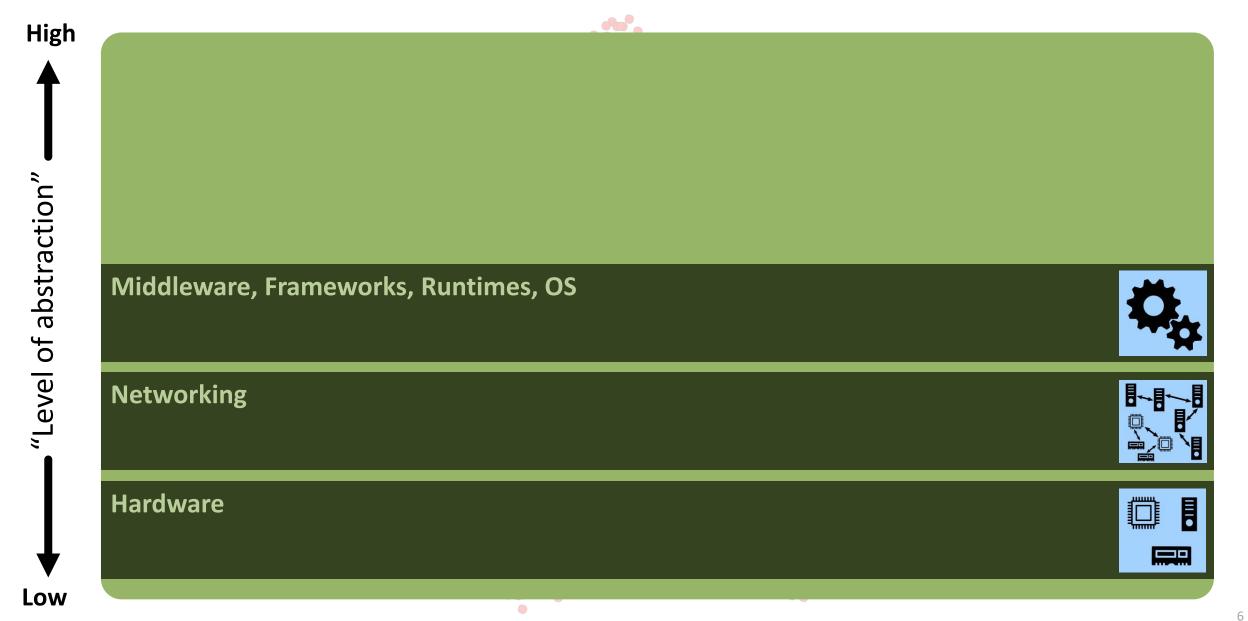

MA STREET

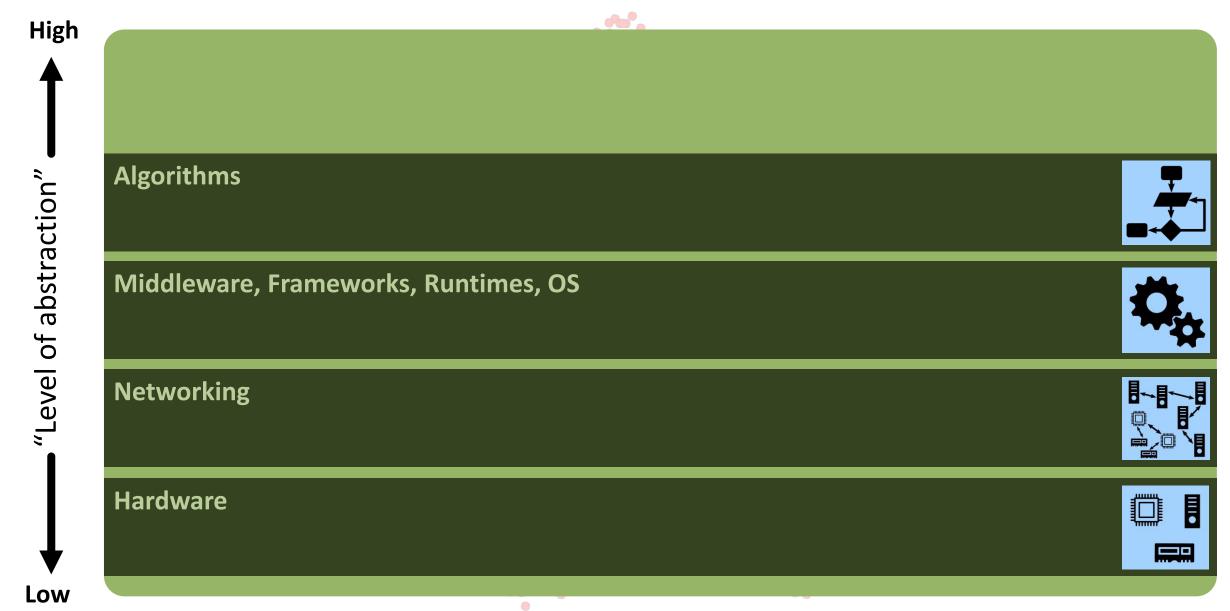


***SPCL

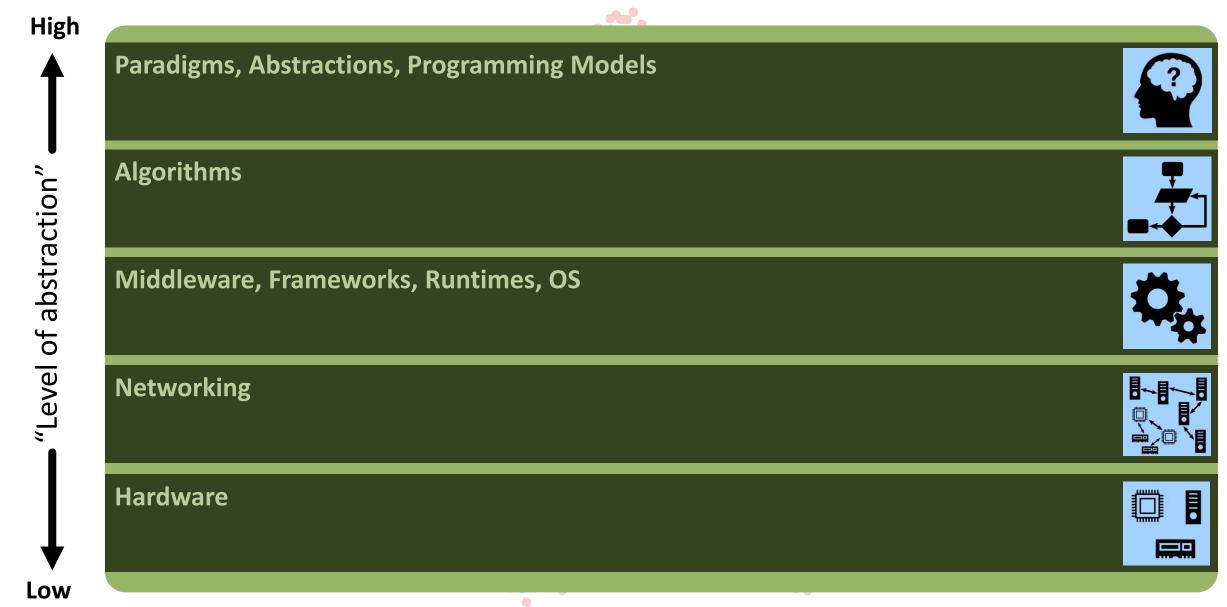
High-Performance Irregular Workloads: Dees Anv INPUT signal A signal B OUTPUT OUTPUT SOUTH WEST T Carbohydrates and Organic Acids Networking 5 ***SPCL

State -

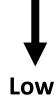

and the second states

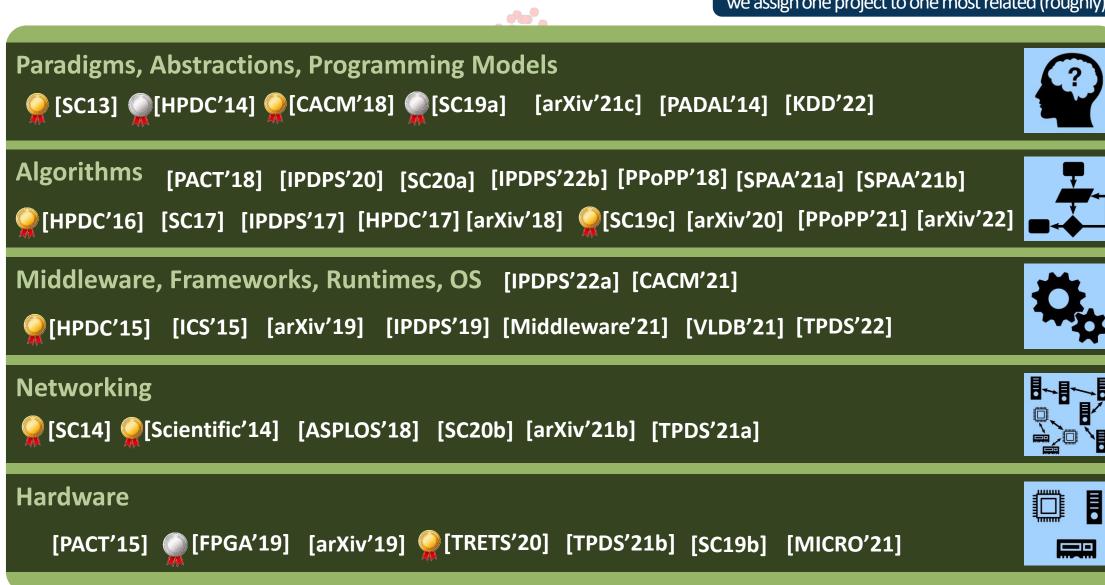

A State of the second sec

all the second second second



The Real Production of the second


***SPCL


Overview of My Research (Perspective of Compute Stack Layers)

A strend and strend the

6

Overview of My Research (Perspective of Compute Stack Layers)

Many projects are touching on multiple levels. For clarity, we assign one project to one most related (roughly) level

High

abstraction"

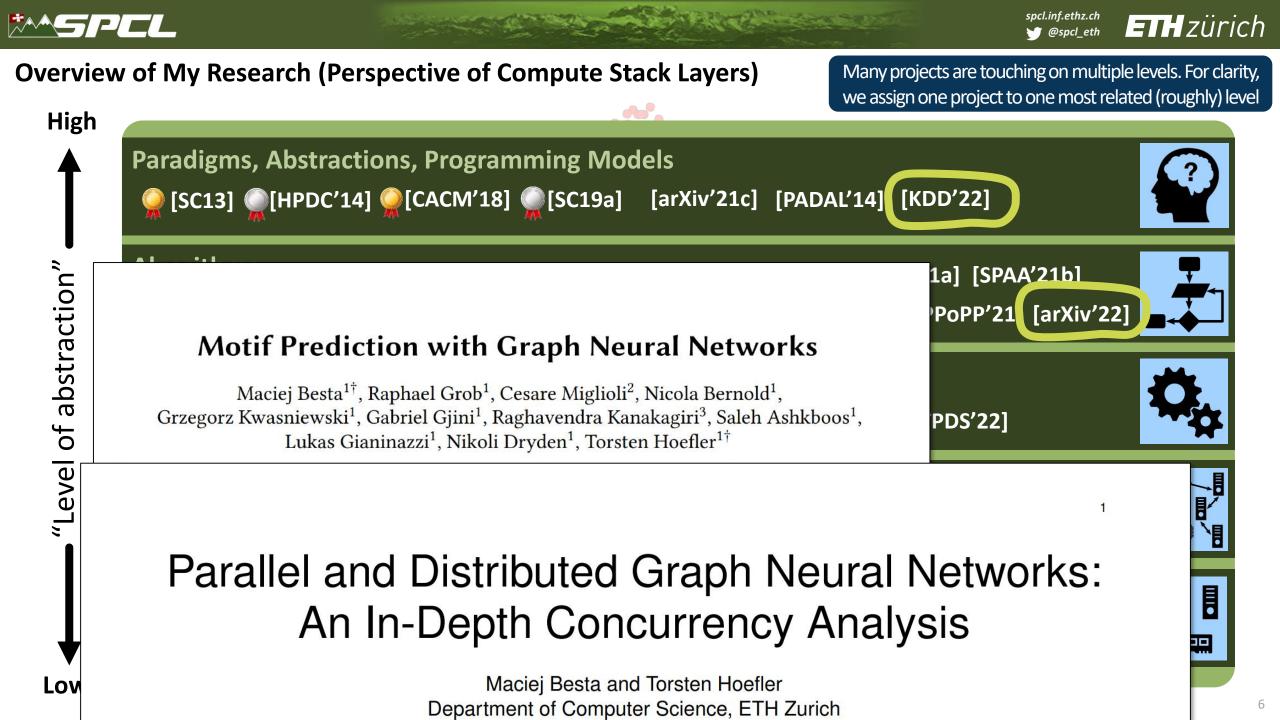
"Level of

spcl.inf.ethz.ch

6

we assign one project to one most related (roughly) level High Paradigms, Abstractions, Programming Models [SC13] [HPDC'14] [CACM'18] [SC19a] [arXiv'21c] [PADAL'14] [KDD'22] Algorithms abstraction" [PACT'18] [IPDPS'20] [SC20a] [IPDPS'22b] [PPoPP'18] [SPAA'21a] [SPAA'21b] [HPDC'16] [SC17] [IPDPS'17] [HPDC'17] [arXiv'18] Middleware, Frameworks, Runtimes, OS [IPDPS'22a] [CACM'21] [HPDC'15] [ICS'15] [arXiv'19] [IPDPS'19] [Middleware'21] [VLDB'21] [TPDS'22] of eve Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

Maciej Besta and Torsten Hoefler Department of Computer Science, ETH Zurich


Overview of My Research (Perspective of Compute Stack Layers)

spcl.inf.ethz.ch

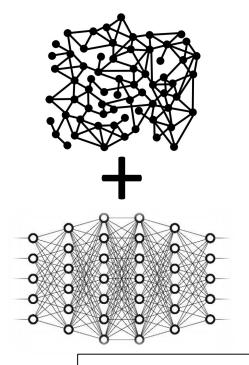
Many projects are touching on multiple levels. For clarity,

@spcl eth

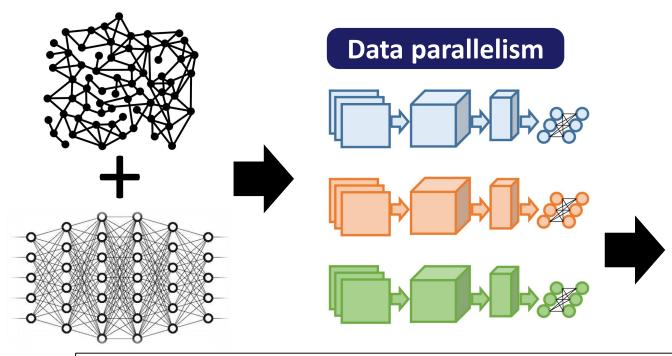
EHzürich

7

Presentation Overview

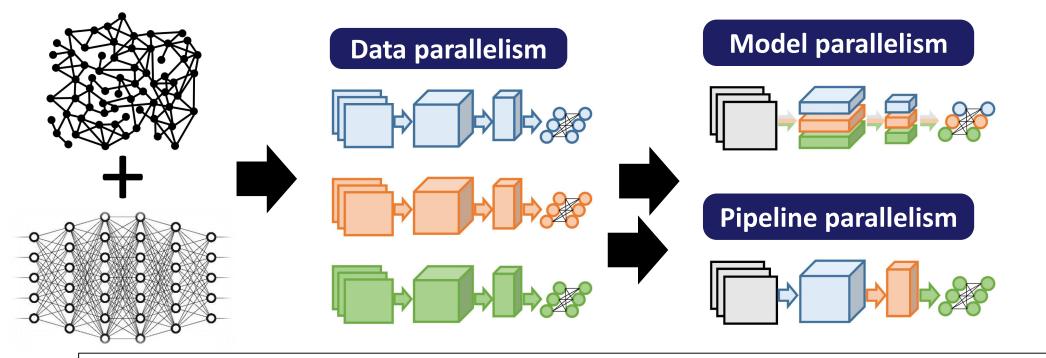

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

A second with

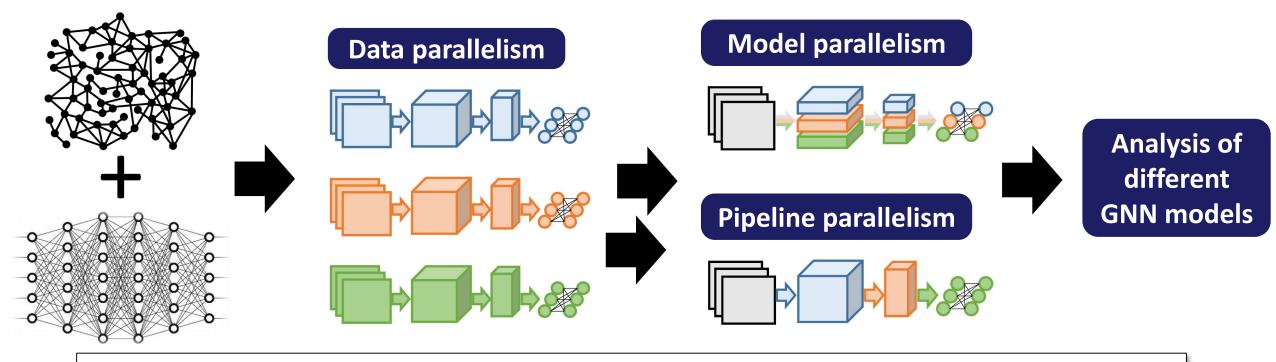

7

Presentation Overview

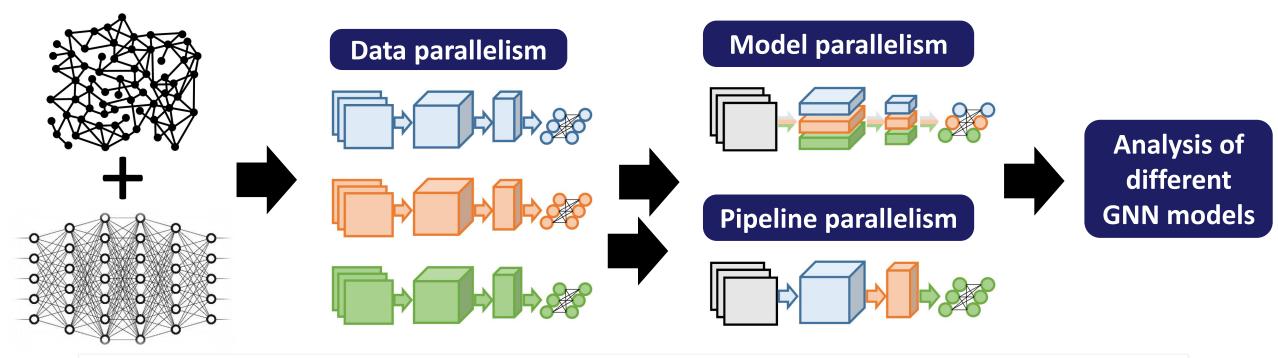
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis



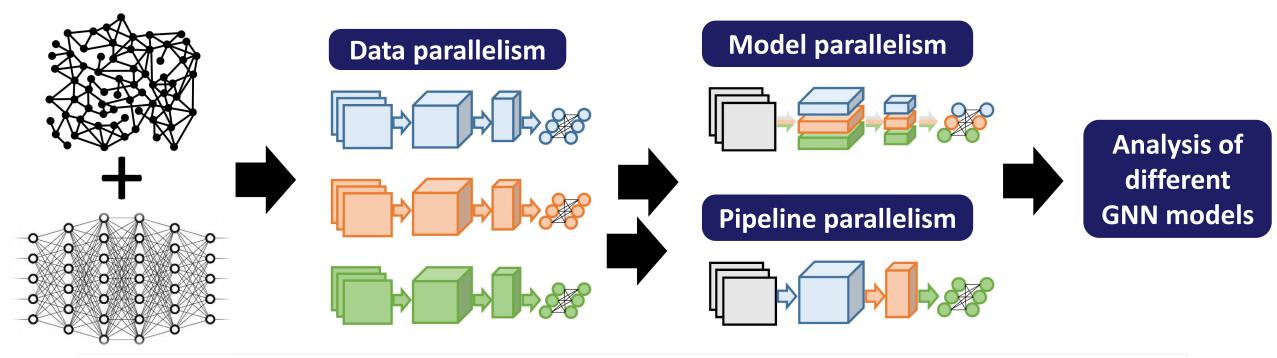
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis


7

Presentation Overview

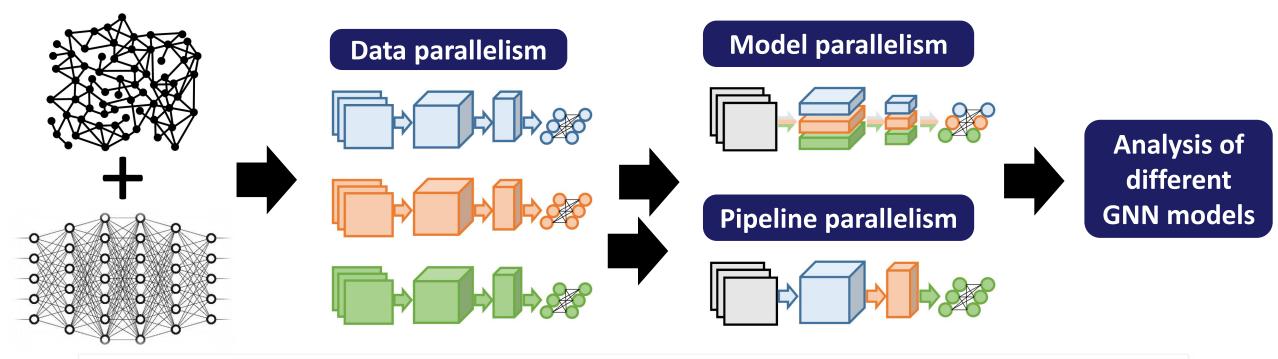

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis



A CATAL AND AND AND

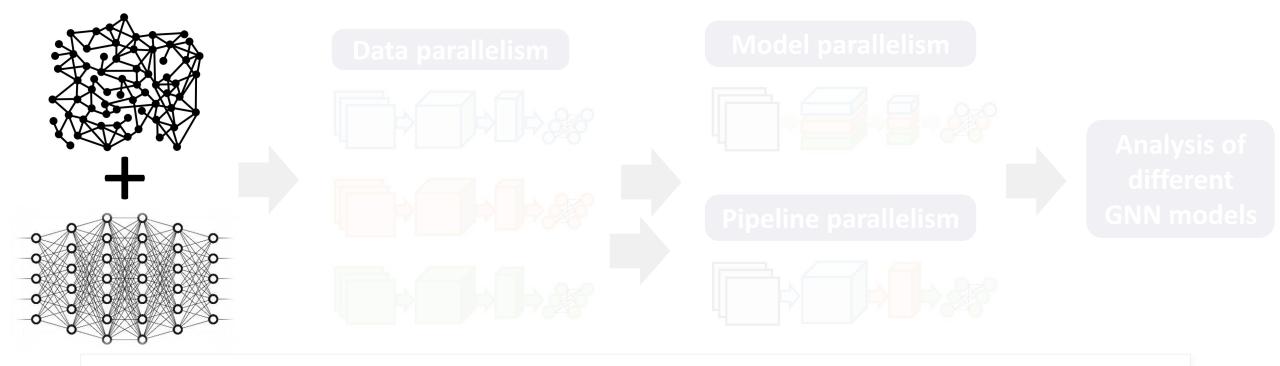
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis



Carlo and and

Traditional Deep Learning (DL) vs. Graph Neural Networks (GNNs)

Graph Neural Networks: currency Analysis



Traditional Deep Learning (DL) vs. Graph Neural Networks (GNNs)

Insights about amount of parallelism in GNN computations

the second and the second

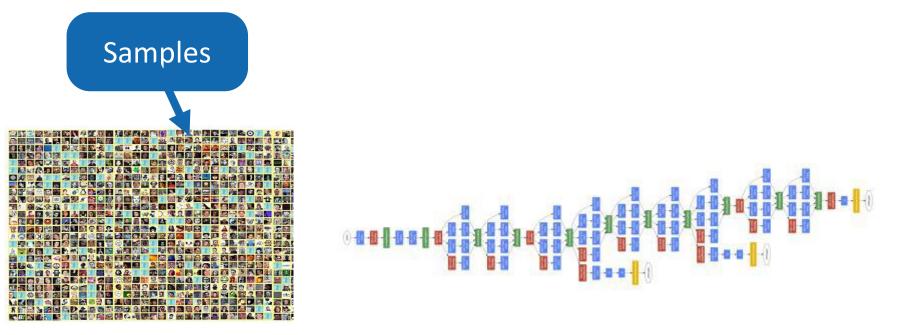
Traditional Deep Learning (DL) vs. Graph Neural Networks (GNNs)

Insights about amount of parallelism in GNN computations

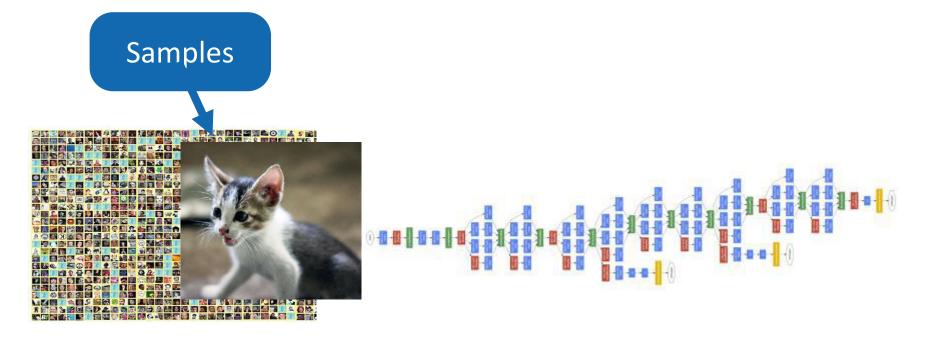
and a state of the

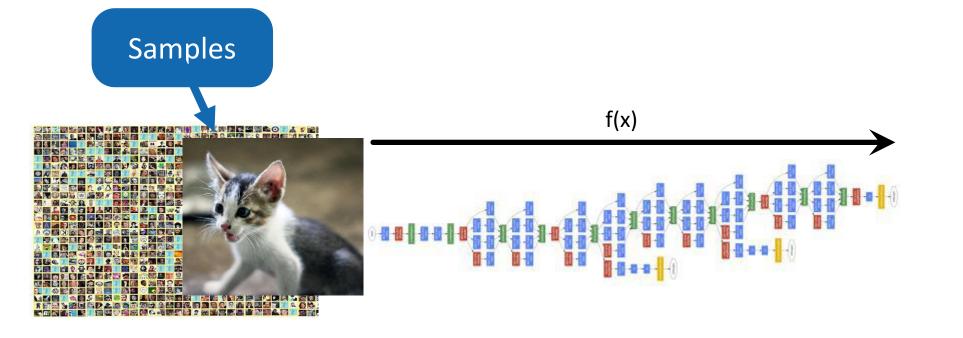
Parts of this slide are borrowed from T. Hoefler

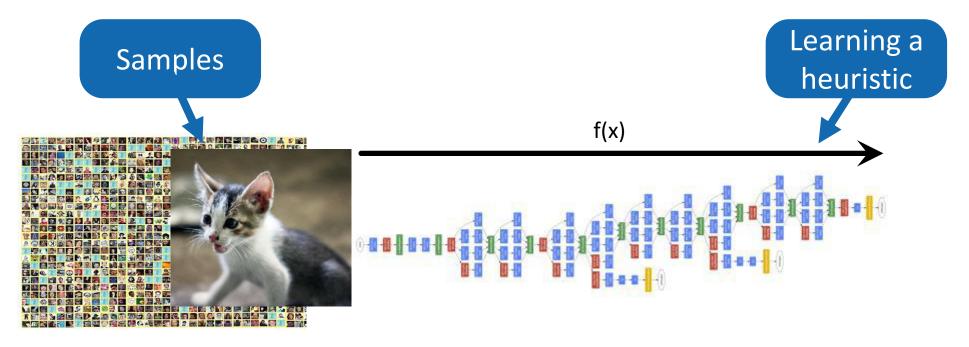
· · · · · · · · · · · · · · · · · · ·
刺ば帰る回帰れずひ路辺目はな際の回期中に知道空軍に発展日を開きま
· · · · · · · · · · · · · · · · · · ·

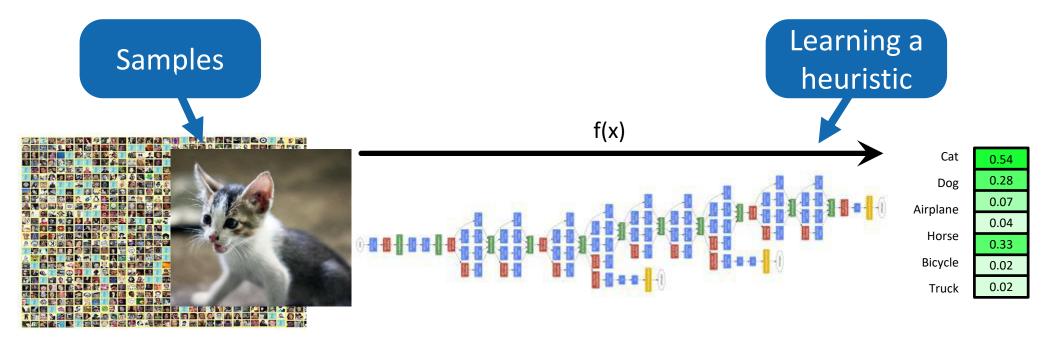


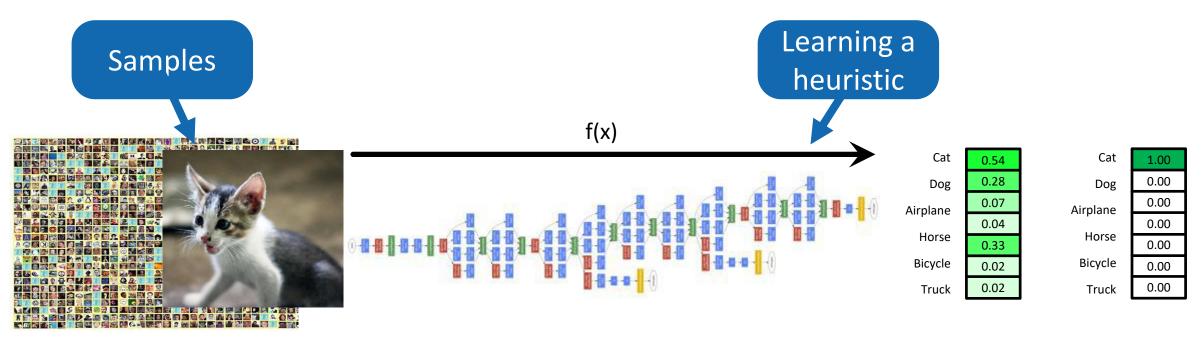
A DESCRIPTION OF THE PARTY OF T

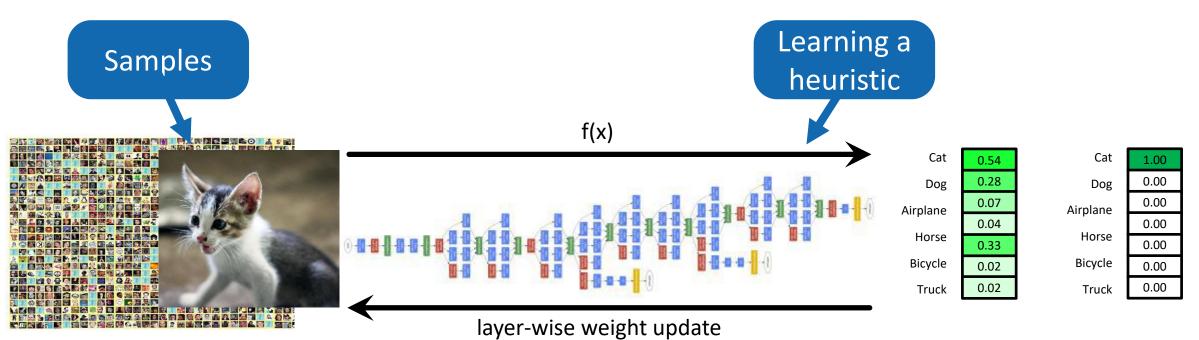

Parts of this slide are borrowed from T. Hoefler



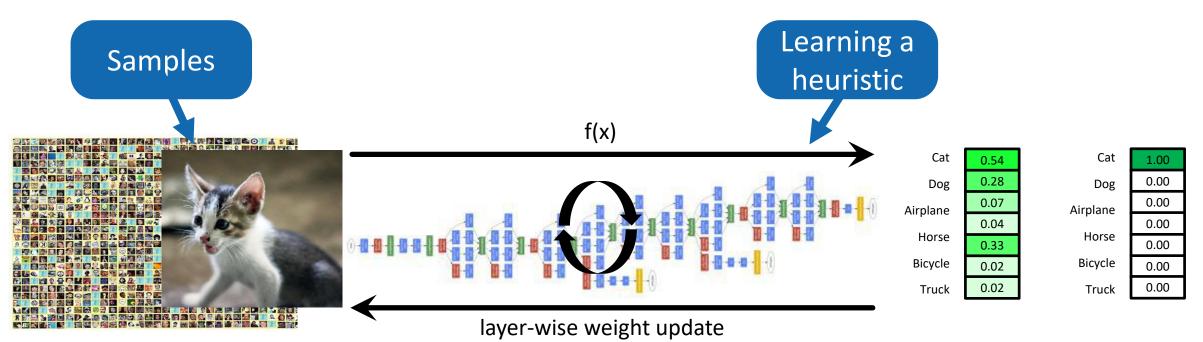




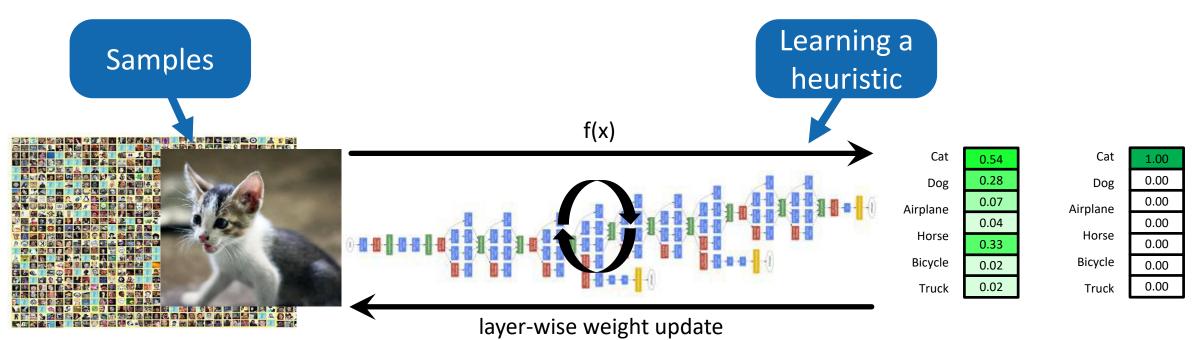




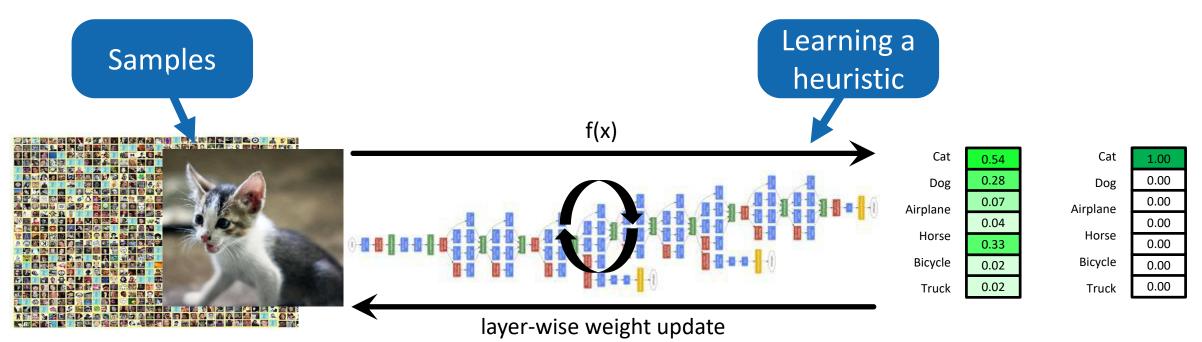
How Does Deep Learning (DL) Work?

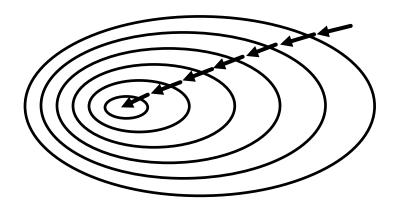


How Does Deep Learning (DL) Work?

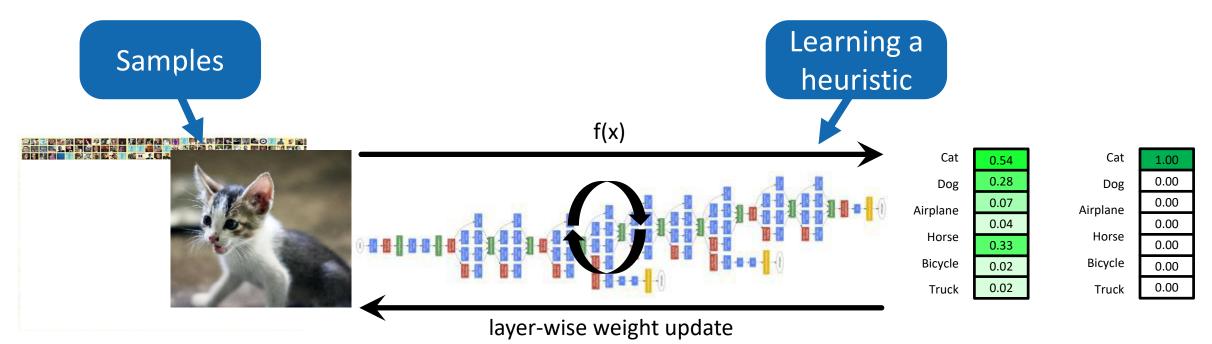


How Does Deep Learning (DL) Work?

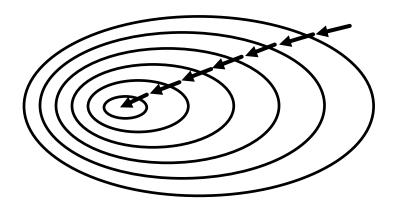

How Does Deep Learning (DL) Work?


Full-batch: accurate weight updates, but slow convergence

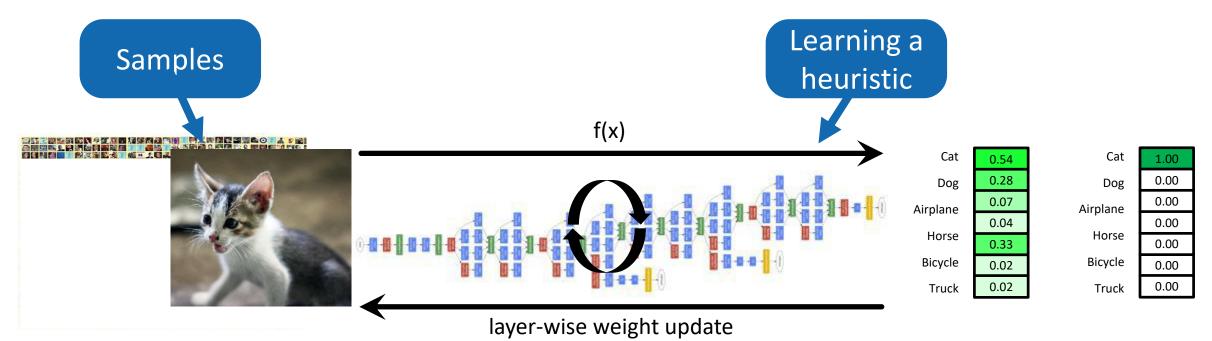
How Does Deep Learning (DL) Work?



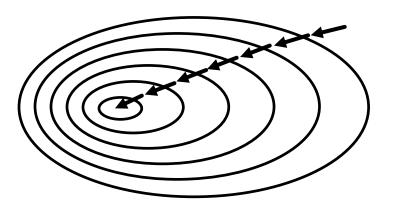
Full-batch: accurate weight updates, but slow convergence



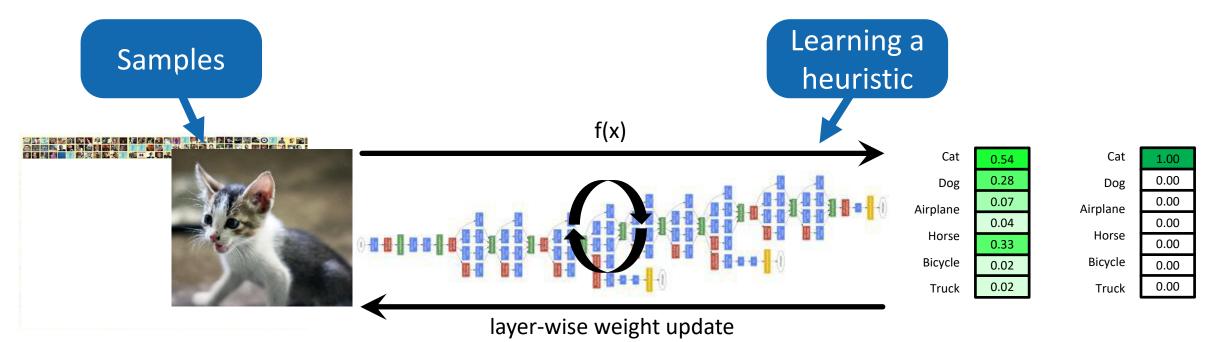
How Does Deep Learning (DL) Work?



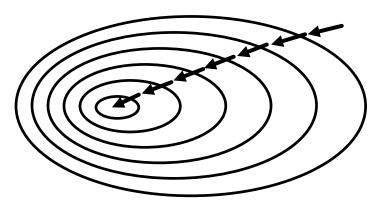
Full-batch: accurate weight updates, but slow convergence

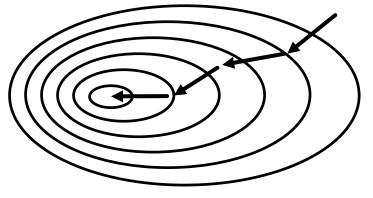


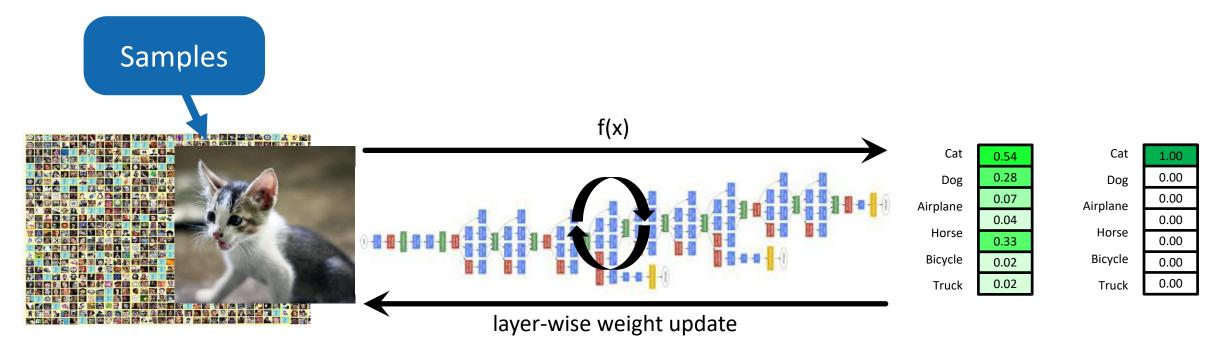
How Does Deep Learning (DL) Work?


Full-batch: accurate weight updates, but slow convergence

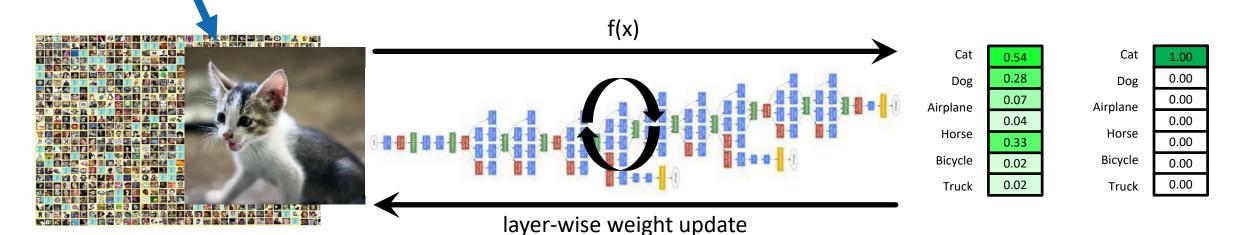
Mini-batch: less accurate weight updates, but faster convergence



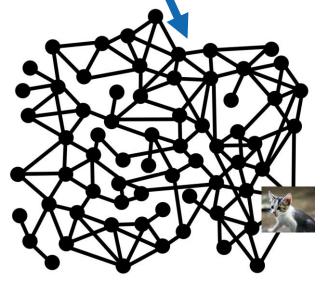

How Does Deep Learning (DL) Work?


Full-batch: accurate weight updates, but slow convergence

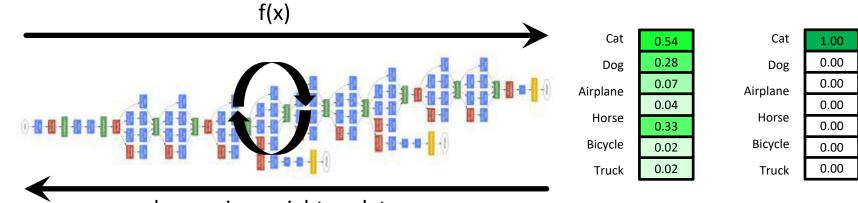
Mini-batch: less accurate weight updates, but faster convergence



Samples


New Form of Deep Learning: Graph Neural Networks (GNNs)

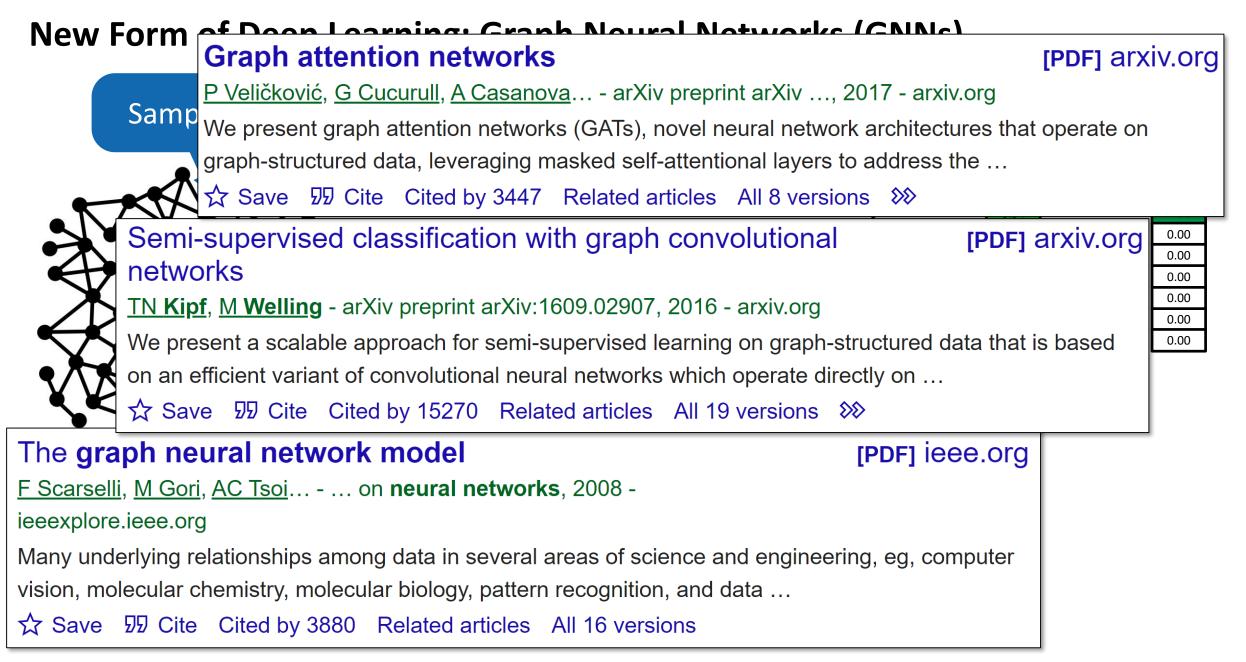
These could still be photos, but now forming **explicit relations**, e.g., two photos are related if they were taken within an hour



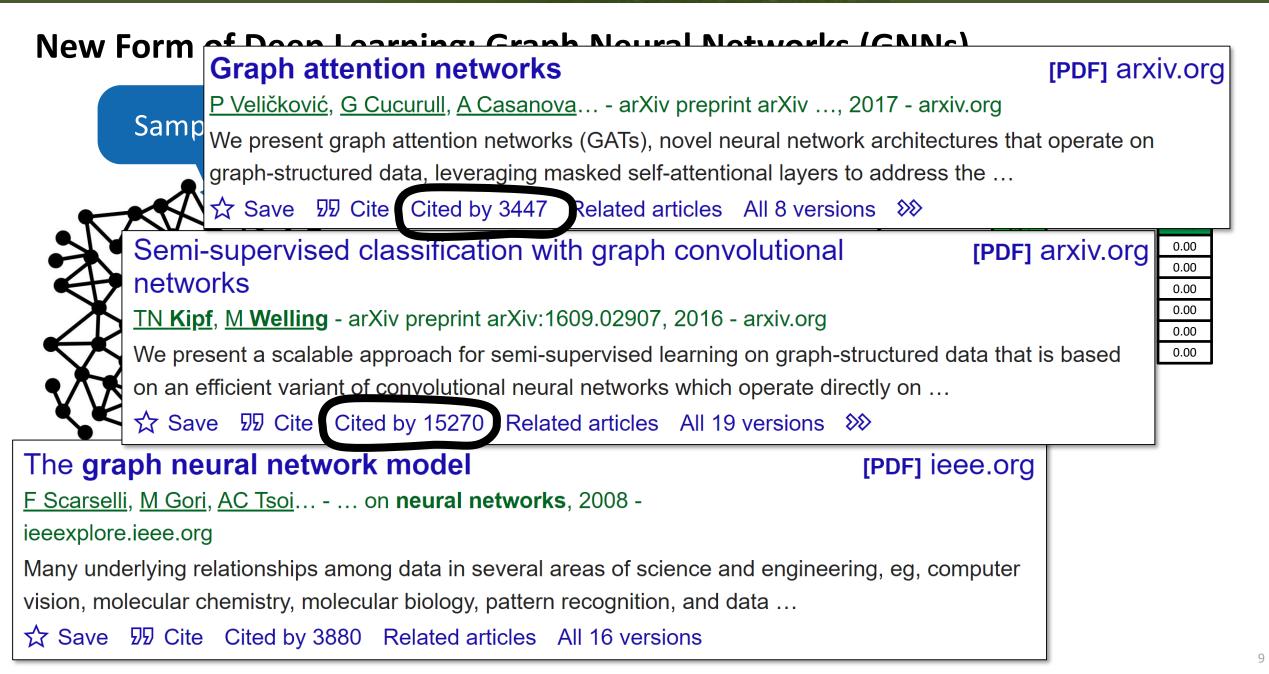
These could still be photos, but now forming **explicit relations**, e.g., two photos are related if they were taken within an hour

Samples

layer-wise weight update


These could still be photos, but now forming **explicit relations**, e.g., Samples two photos are related if they were taken within an hour f(x) Cat Cat 1.00 0.54 0.28 Dog 0.00 Dog 0.07 0.00 Airplane Airplane 0.04 0.00 Horse Horse 0.00 0.33 Bicycle Bicycle 0.02 0.00 0.02 0.00 Truck Truck layer-wise weight update

The graph neural network model[PDF] ieee.orgF Scarselli, M Gori, AC Tsoi... - ... on neural networks, 2008 -
ieeexplore.ieee.orgImage: Computer of the second seco



These could still be photos, but now forming **explicit relations**, e.g., Samples two photos are related if they were taken within an hour f(x)Cat Cat 1.00 Semi-supervised classification with graph convolutional [PDF] arxiv.org 0.00 0.00 networks 0.00 0.00 TN Kipf, M Welling - arXiv preprint arXiv:1609.02907, 2016 - arxiv.org 0.00 We present a scalable approach for semi-supervised learning on graph-structured data that is based 0.00 on an efficient variant of convolutional neural networks which operate directly on ... $\cancel{2}$ Save $\cancel{99}$ Cite Cited by 15270 Related articles All 19 versions $\cancel{88}$ The graph neural network model [PDF] ieee.org F Scarselli, M Gori, AC Tsoi... - ... on neural networks, 2008 ieeexplore.ieee.org Many underlying relationships among data in several areas of science and engineering, eg, computer vision, molecular chemistry, molecular biology, pattern recognition, and data ... $\cancel{3}$ Save $\cancel{99}$ Cite Cited by 3880 Related articles All 16 versions

the second second


A PARTY AND AND AND AND

all of the second second second

Let's see some recent success stories of GNNs

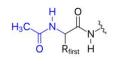
The second

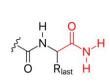
A Constant and

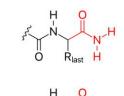
EXAMPLE: PROTEIN FOLDING

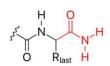
North King Street Street

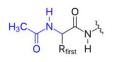
EXAMPLE: PROTEIN FOLDING

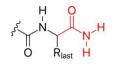

Given this...

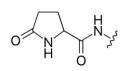


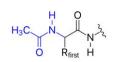

Sand Statistics and the second

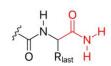

EXAMPLE: PROTEIN FOLDING

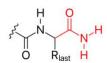


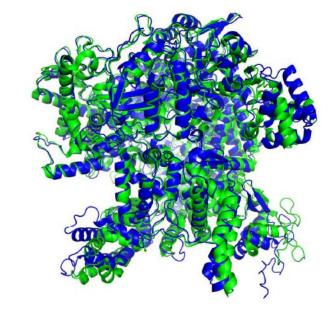


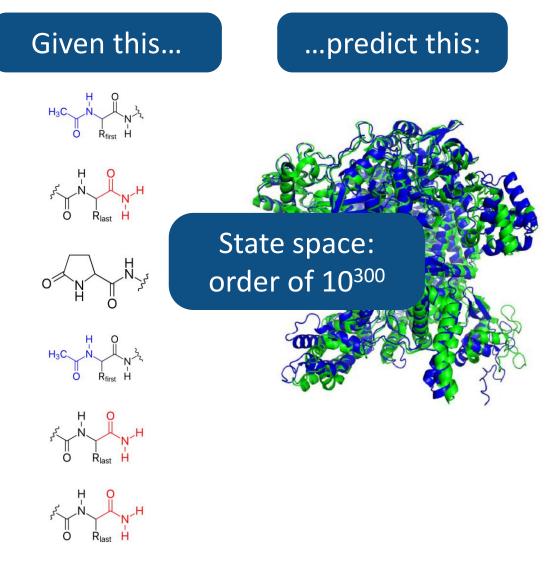

12 - Carlos Parts


EXAMPLE: PROTEIN FOLDING

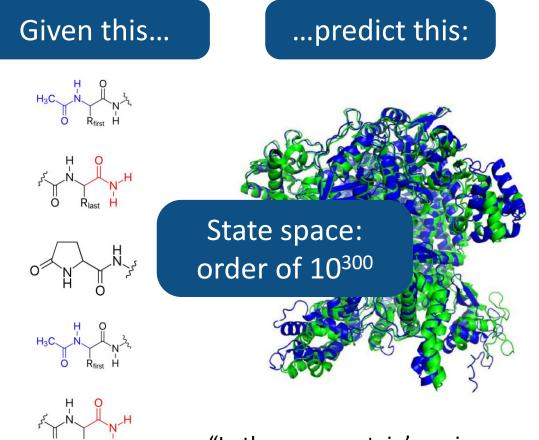






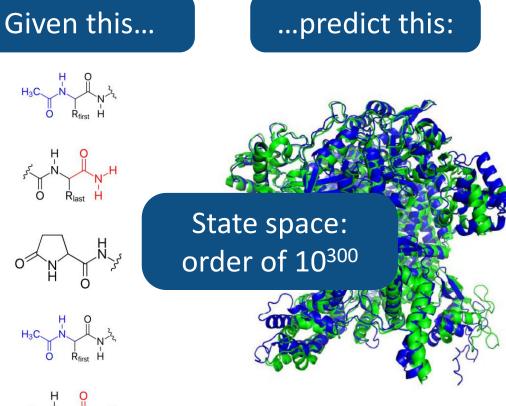


...predict this:



The second second second

EXAMPLE: PROTEIN FOLDING

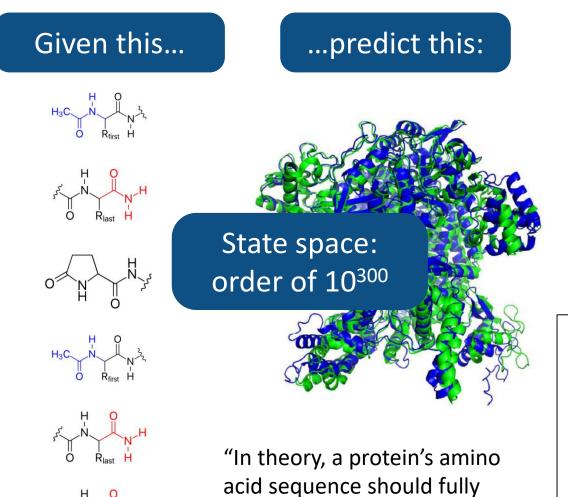


"In theory, a protein's amino acid sequence should fully determine its structure" (Christian Anfinsen, 1972 Nobel Prize in Chemistry)

 $\bullet \bullet \bullet$

"In theory, a protein's amino acid sequence should fully determine its structure" (Christian Anfinsen, 1972 Nobel Prize in Chemistry)

Article


@ Nature 2021

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2	John Jumper ^{1,4} , Richard Evans ^{1,4} , Alexander Pritzel ^{1,4} , Tim Green ^{1,4} , Michael Figurnov ^{1,4} ,
Received: 11 May 2021	Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Žídek ^{1,4} , Anna Potapenko ^{1,4} , Alex Bridgland ^{1,4} , Clemens Meyer ^{1,4} , Simon A. A. Kohl ^{1,4} ,
Accepted: 12 July 2021	Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Stanislav Nikolov ^{1,4} , Rishub Jain ^{1,4} , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinski ¹ , Martin Steinegger ^{2,3} , Michalina Pacholska ¹ , Tamas Berghammer ¹ , Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuoglu ¹ ,
Published online: 15 July 2021	
Open access	
Check for updates	Pushmeet Kohli ¹ & Demis Hassabis ^{1,4}

Proteins are essential to life, and understanding their structure can facilitate a

determine its structure"

(Christian Anfinsen, 1972

Nobel Prize in Chemistry)

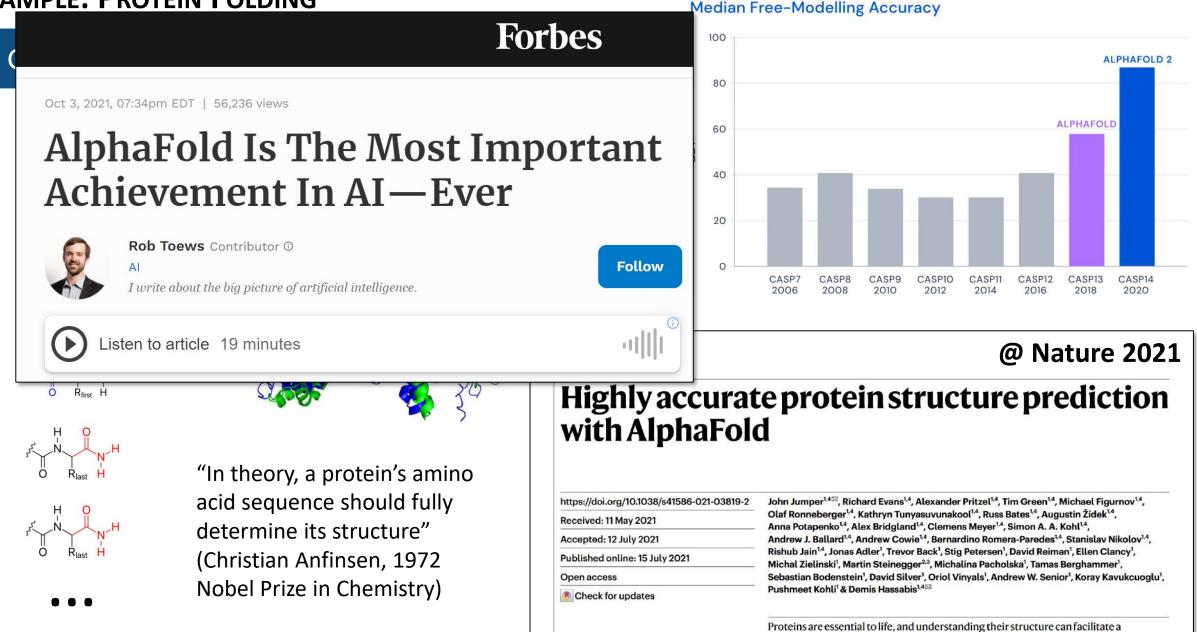
Median Free-Modelling Accuracy

Article

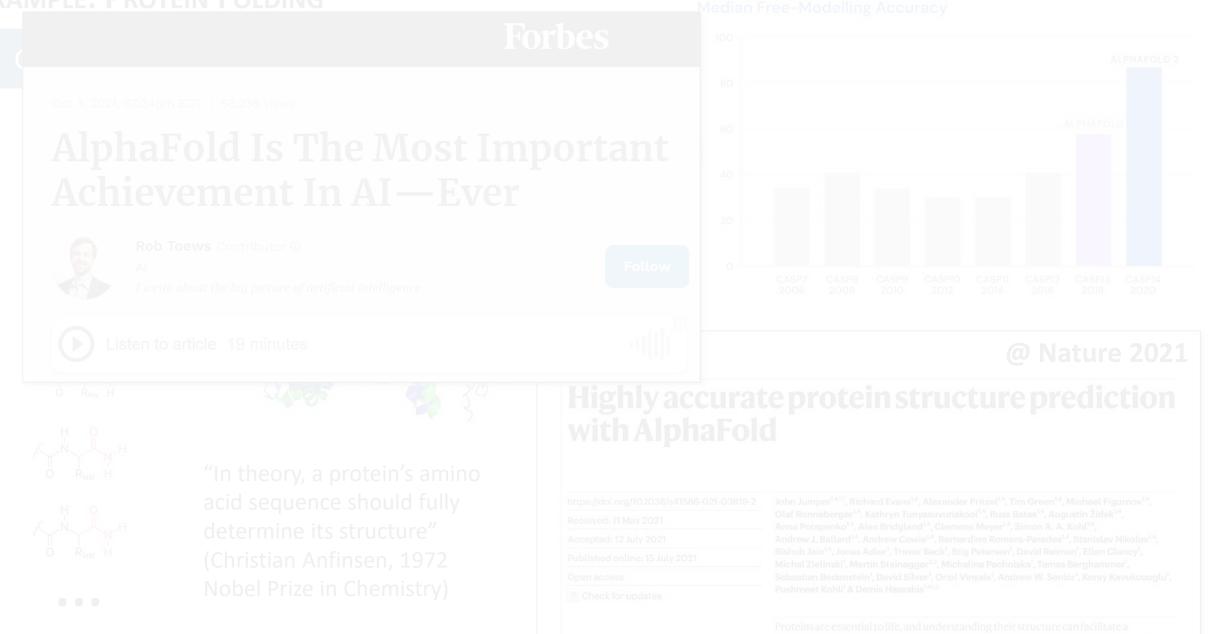
@ Nature 2021

11

Highly accurate protein structure prediction with AlphaFold


https://doi.org/10.1038/s41586-021-03819-2	John Jumper ¹⁴ ²² , Richard Evans ^{1,4} , Alexander Pritzel ^{1,4} , Tim Green ^{1,4} , Michael Figurnov ^{1,4} , Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Židek ^{1,4} , Anna Potapenko ^{1,4} , Alex Bridgland ^{1,4} , Clemens Meyer ^{1,4} , Simon A. A. Kohl ^{1,4} , Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Stanislav Nikolov ^{1,4} , Rishub Jain ^{1,4} , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinski ¹ , Martin Steinegger ^{2,3} , Michalina Pacholska ¹ , Tamas Berghammer ¹ , Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuoglu ¹ ,
Received: 11 May 2021	
Accepted: 12 July 2021	
Published online: 15 July 2021	
Open access	
Check for updates	Pushmeet Kohli ¹ & Demis Hassabis ¹⁴

Proteins are essential to life, and understanding their structure can facilitate a


11

EXAMPLE: PROTEIN FOLDING



***SPCL

EXAMPLE: PROTEIN FOLDING

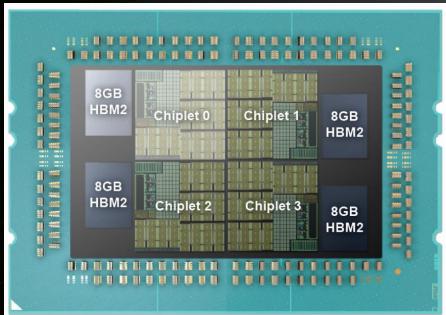
Charles and the second second

The second second

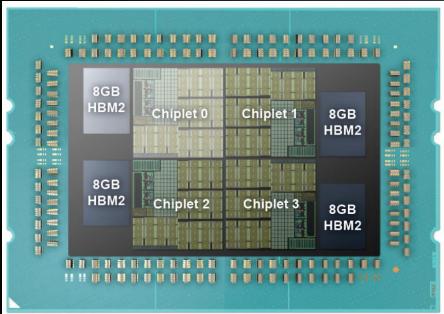
"In theory, a protein's amino acid sequence should fully determine its structure" (Christian Anfinsen, 1972 Nobel Prize in Chemistry)

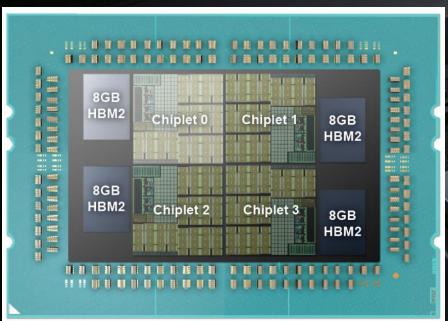
hn Jumper¹⁴⁵³, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, af Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Židek^{1,4}, ina Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, idrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, shub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, chal Zielinski¹, Martin Steinegger^{2,2}, Michalina Pacholska¹, Tamas Berghammer¹, bastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu shmeet Kohli¹ & Demis Hassabis^{14,53}

Proteins are essential to life, and understanding their structure can facilitate a



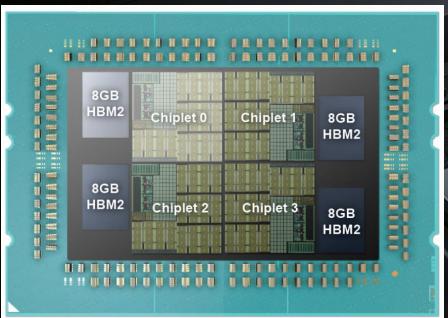
Find a physical layout for this:


Find a physical layout for this:

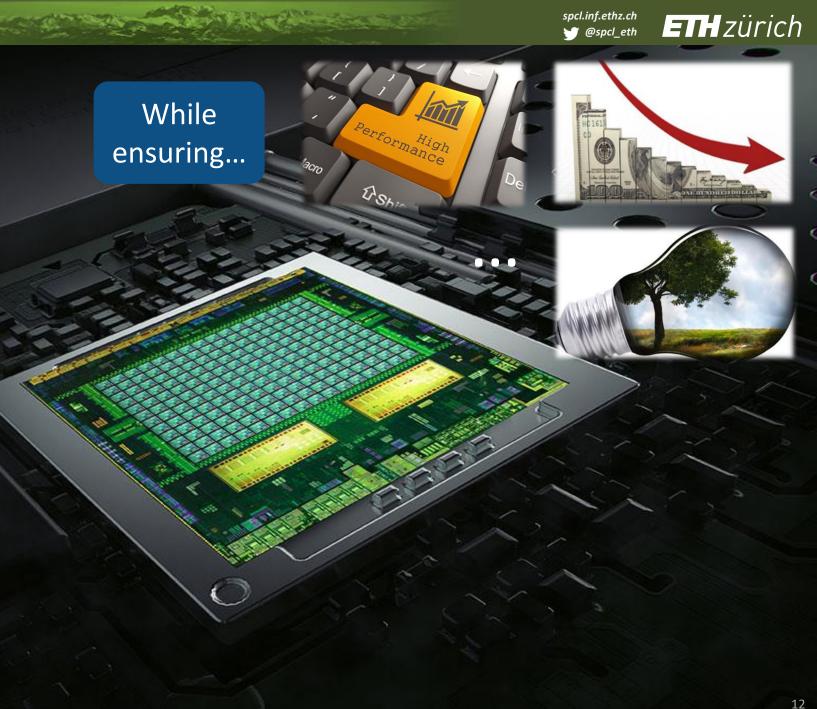

Find a physical layout for this:

Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks, cores, caches, gates, ...

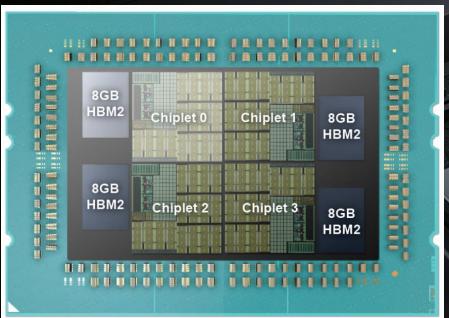
Find a physical layout for this:



Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks, cores, caches, gates, ... spcl.inf.ethz.ch


While ensuring...

Find a physical layout for this:



Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks, cores, caches, gates, ...

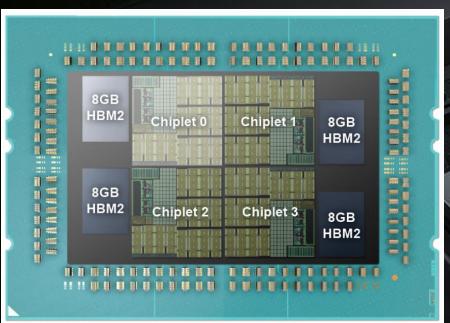
Find a physical layout for this:

Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks, cores, caches, gates, ... While ensuring...

ETH zürich

spcl.inf.ethz.ch

🅤 @spcl_eth


State space: order of 10²⁵⁰⁰

12

Find a physical layout for this:

Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks, cores, caches, gates, ...

Article

A graph placement methodology for fast chip design

https://doi.org/10.1038/s41586-021-03544-w Received: 3 November 2020 Accepted: 13 April 2021

Published online: 9 June 2021

Check for updates

Azalia Mirhoseini^{1,4}, Anna Goldie^{1,3,4}, Mustafa Yazgan², Joe Wenjie Jiang¹, Ebrahim Songhori¹, Shen Wang¹, Young-Joon Lee², Eric Johnson¹, Omkar Pathak², Azade Nazi¹, Jiwoo Pak², Andy Tong², Kavya Srinivasa², William Hang³, Emre Tuncer², Quoc V. Le¹, James Laudon¹, Richard Ho², Roger Carpenter² & Jeff Dean¹

spcl.inf.ethz.ch

Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research¹ chip floorplanning has defied

12

nature

Explore content 🎽 About the journal 🌱

Publish with us 🎽

Subscribe

nature > nature podcast > article

NATURE PO GOO desi

NATURE PODCAST | 09 June 2021

Google AI beats humans at designing computer chips

An AI that designs computer chips in hours, and zooming in on DNA's complex 3D structures.

e space: of 10²⁵⁰⁰

spcl.inf.ethz.ch

🍯 @spcl_eth

EHzürich

@ Nature 2021

nethodology for fast

Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks, cores, caches, gates, ...

https://doi.org/10.1038/s41586-021-03544-w

Received: 3 November 2020

Accepted: 13 April 2021 Published online: 9 June 2021 Azalia Mirhoseini^{1,4}[™], Anna Goldie^{1,3,4}[™], Mustafa Yazgan², Joe Wenjie Jiang¹, Ebrahim Songhori¹, Shen Wang¹, Young-Joon Lee², Eric Johnson¹, Omkar Pathak², Azade Nazi¹, Jiwoo Pak², Andy Tong², Kavya Srinivasa², William Hang³, Emre Tuncer², Quoc V. Le¹, James Laudon¹, Richard Ho², Roger Carpenter² & Jeff Dean¹

Chip floorplanning is the engineering task of designing the physical layout of a

12

Example: Chip Placement

nature

Find

re content 🌱 🔹 About the journal 🌱 👘

Publish with us 🌱

Subscribe

nature > nature podcast > article

NATURE PODCAST 09 June 2021

Google AI beats humans at designing computer chips

An AI that designs computer chips in hours, and zooming in on DNA's complex 3D structures.

space: of 10²⁵⁰

@ Nature 2021

nethodology for fast

Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks,

cores, caches, gates, ..

https://doi.org/10.1038/s41586-021-03544-Received: 3 November 2020

Published online: 9 June 2021

Check for updates

zalia Mirhoseini^{1,433}, Anna Goldie^{1,3,433}, Mustafa Yazgan², Joe Wenjie Jiang¹, brahim Songhori¹, Shen Wang¹, Young-Joon Lee², Eric Johnson¹, Omkar Pathak², zade Nazi¹, Jiwoo Pak², Andy Tong², Kavya Srinivasa², William Hang³, Emre Tuncer², uoc V. Le¹, James Laudon¹, Richard Ho², Roger Carpenter² & Jeff Dean¹

Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research¹, chip floorplanning has defied

EXAMPLE: CHIP PLACEMENT

Find

lore content 🌱 🔷 About the journ

nature [>] nature podcast [>] article

Key technique? 🕲

NATURE PODCAST 09 June 2021

Google Al designing

An Al that designs compustructures.

Graph Embeddings / Graph Neural Networks + Reinforcement Learning

@ Nature 2021

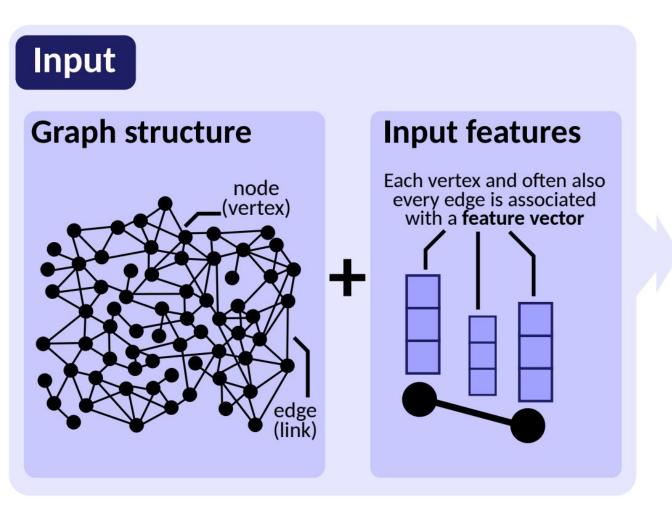
ology for fast

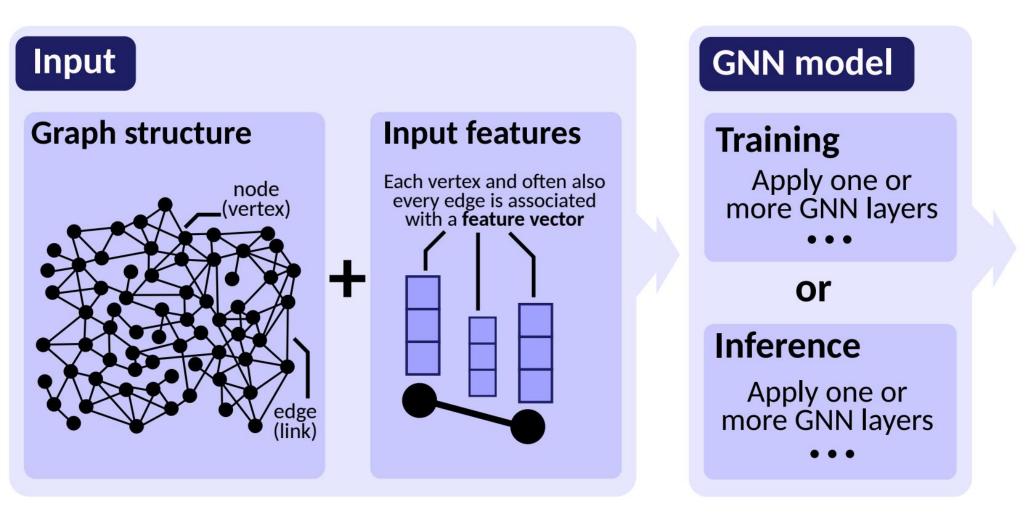
Physical layout: placement of up to millions of (highly heterogeneous) elements such as memory banks,

cores, caches, gates, ..

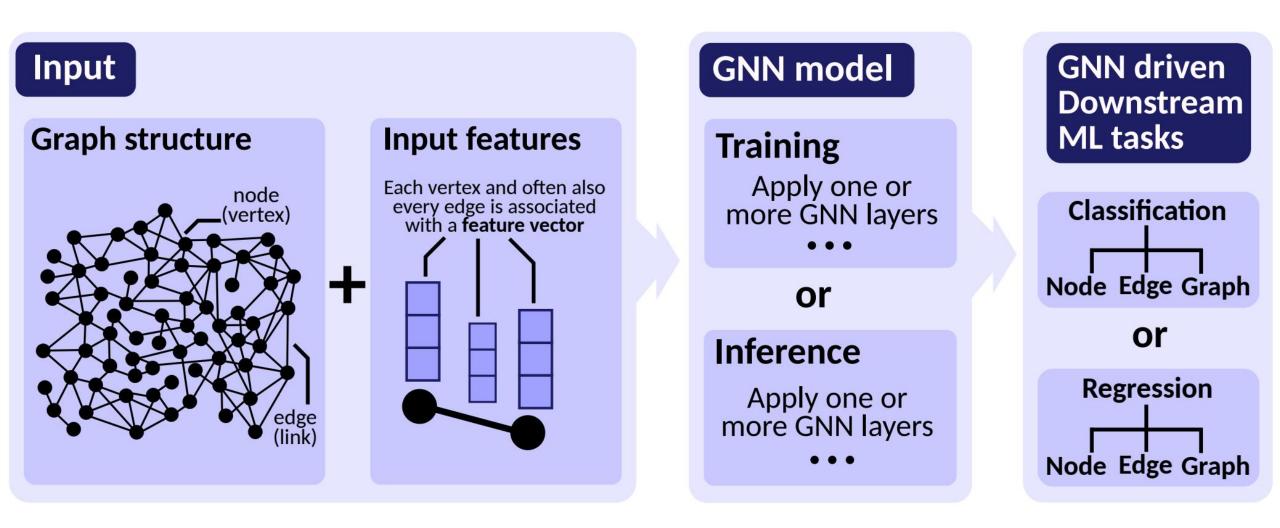
Check for updates

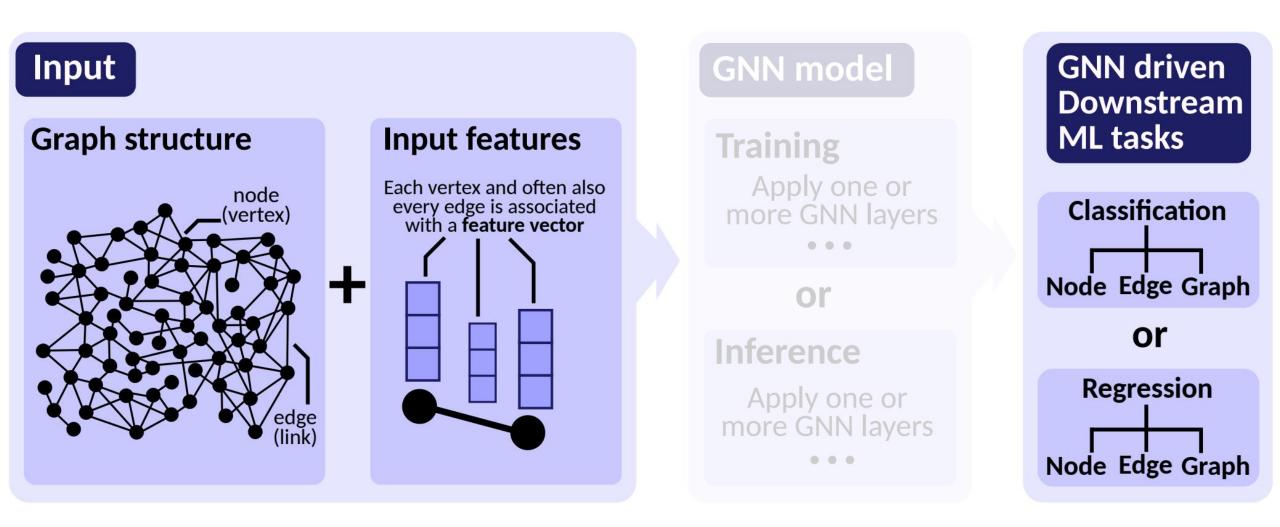
Azalia Mirhoseini^{1,4}⁶³, Anna Goldie^{1,3,4}⁶³, Mustafa Yazgan², Joe Wenjie Jiang¹, Ebrahim Songhori¹, Shen Wang¹, Young-Joon Lee², Eric Johnson¹, Omkar Pathak², Azade Nazi¹, Jiwoo Pak², Andy Tong², Kavya Srinivasa², William Hang³, Emre Tuncer², Auoc V. Le¹, James Laudon¹, Richard Ho², Roger Carpenter² & Jeff Dean¹


Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research¹ chip floorplanning has defied

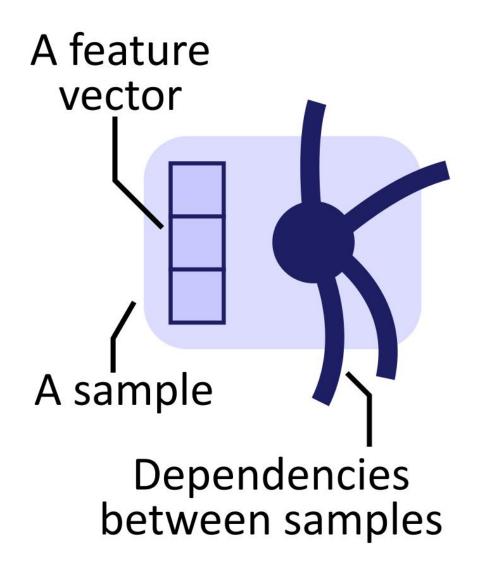

The sections

Overview of a GNN Computation

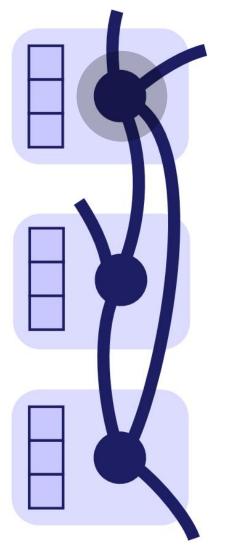


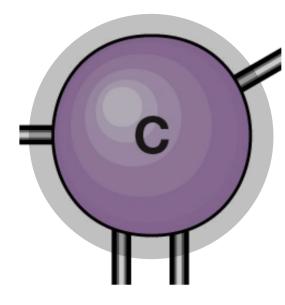


13

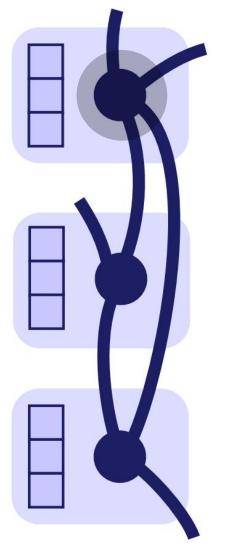


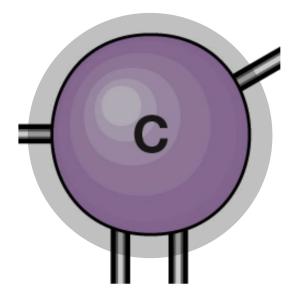
The second second


2


Vertices (dependent)

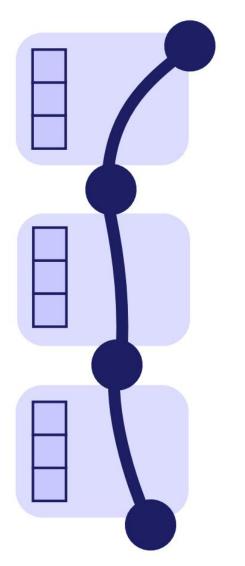
Vertices (dependent)

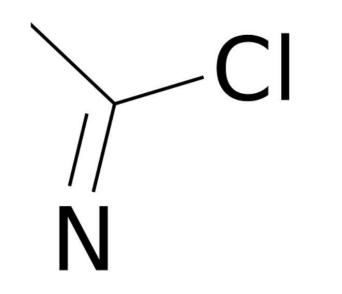




Example: atom

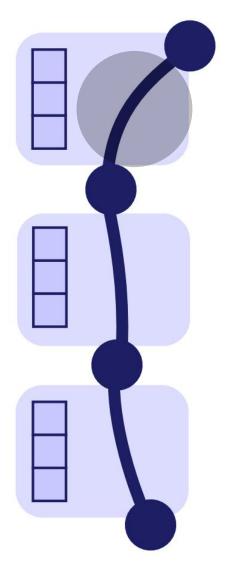
Vertices (dependent)

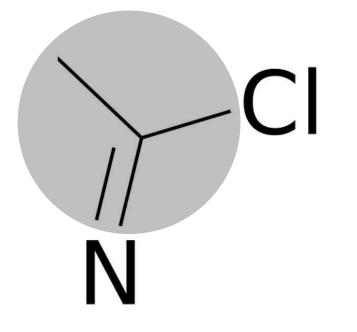

Example: atom


Example classification task: predict the atom element

Example regression task: predict the atom charge

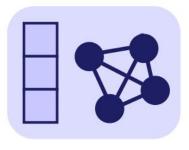
Edges (dependent)

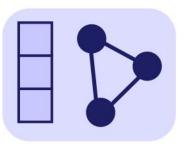

Example: atomic bond

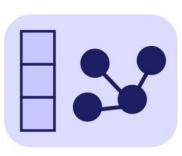

Example classification task: predict the bond type

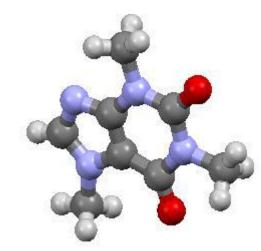
Example regression task: predict the bond valence

Edges (dependent)

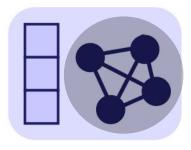

Example: atomic bond

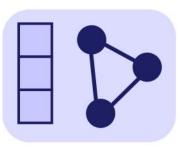

Example classification task: predict the bond type

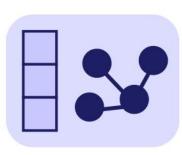

Example regression task: predict the bond valence

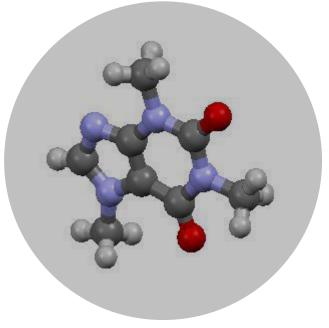


Graphs (independent)

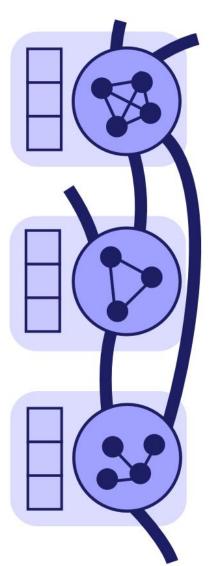

Example: chemical molecule

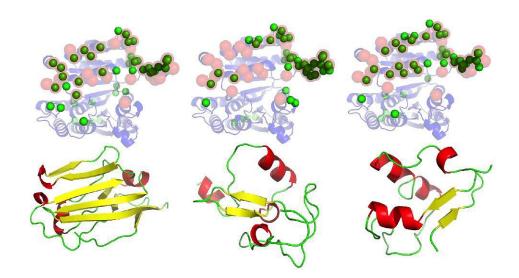

Example classification task: predict the class of a molecule


Example regression task: predict the solubility of a molecule



Graphs (independent)

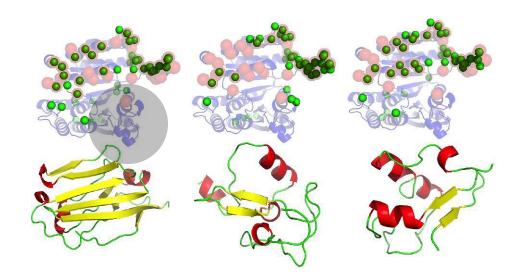

Example: chemical molecule


Example classification task: predict the class of a molecule

Example regression task: predict the solubility of a molecule

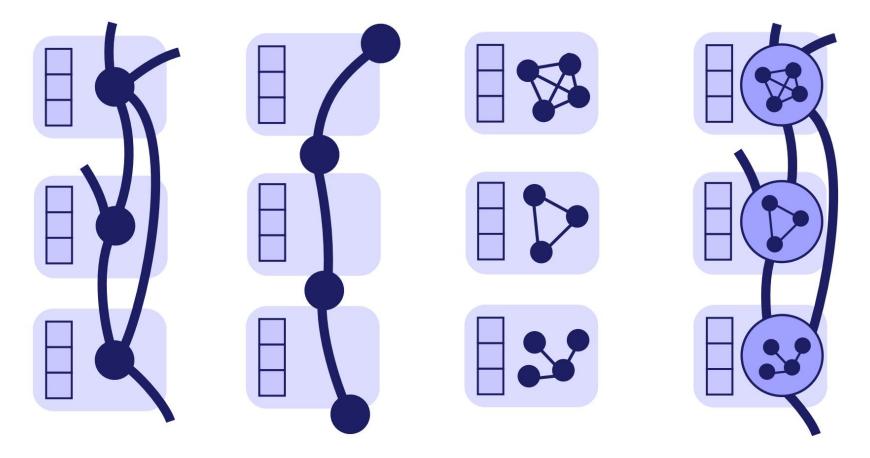
Graphs (dependent)

Example: interacting protein


Example classification task: predict the protein type

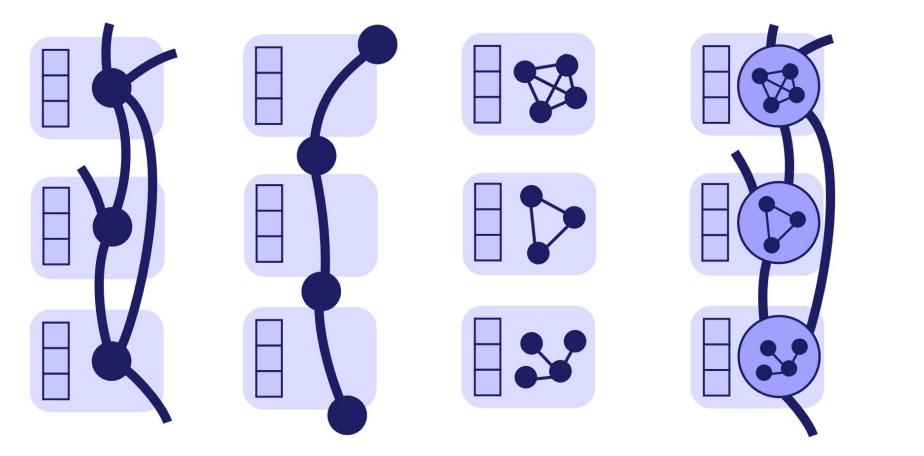
Example regression task: predict molecular weight

Graphs (dependent)


Example: interacting protein

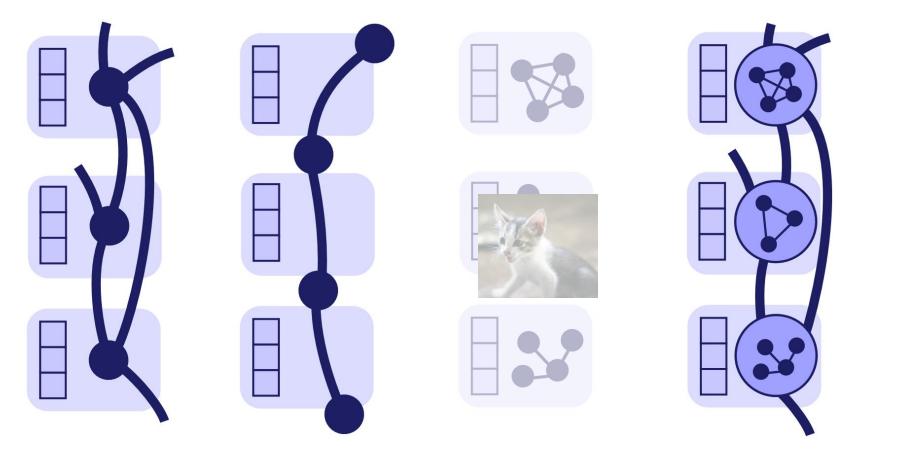
Example classification task: predict the protein type

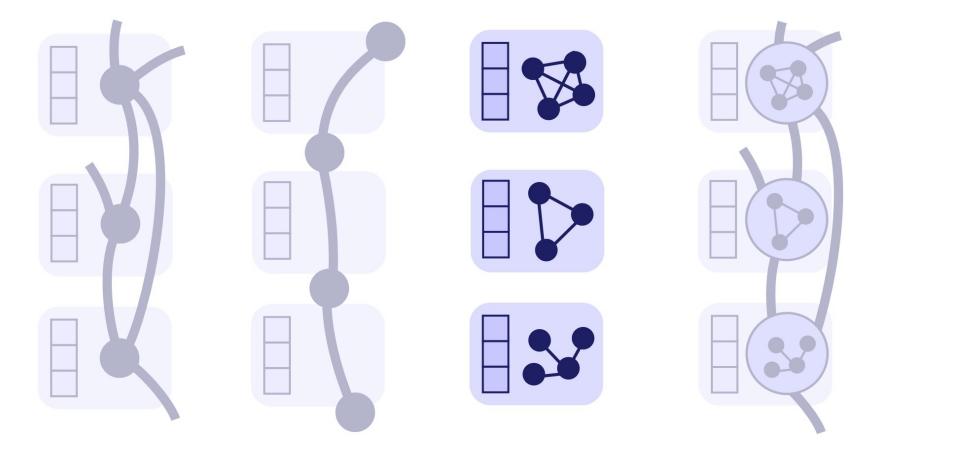
Example regression task: predict molecular weight



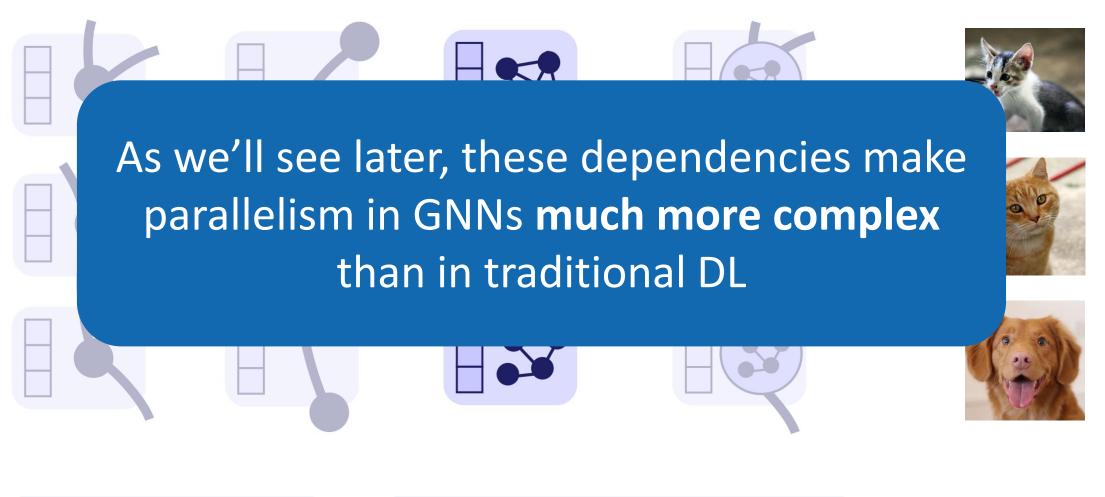
State Same

the second

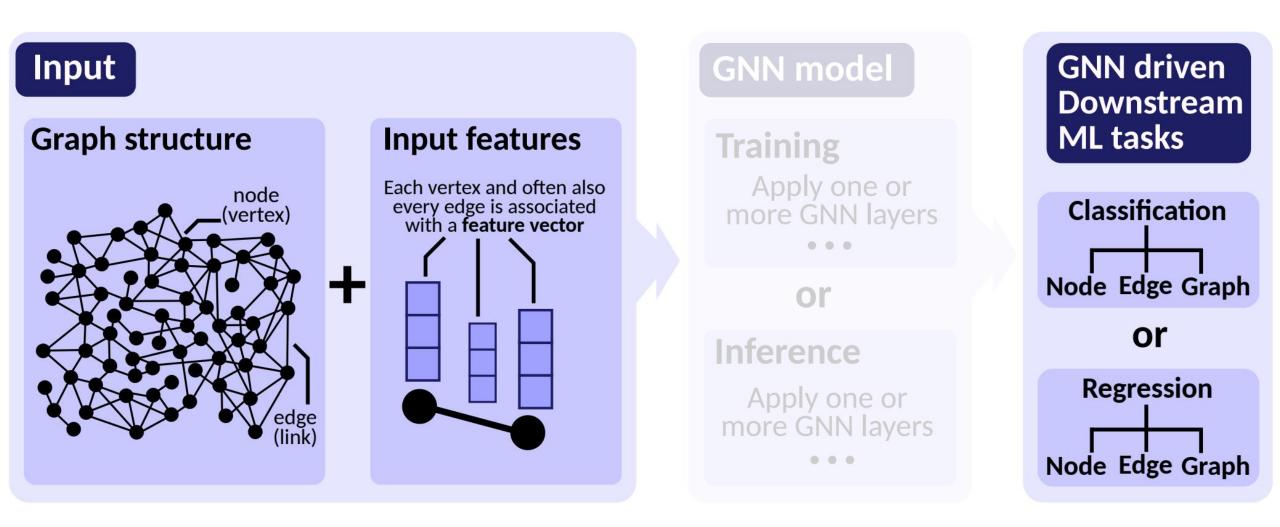


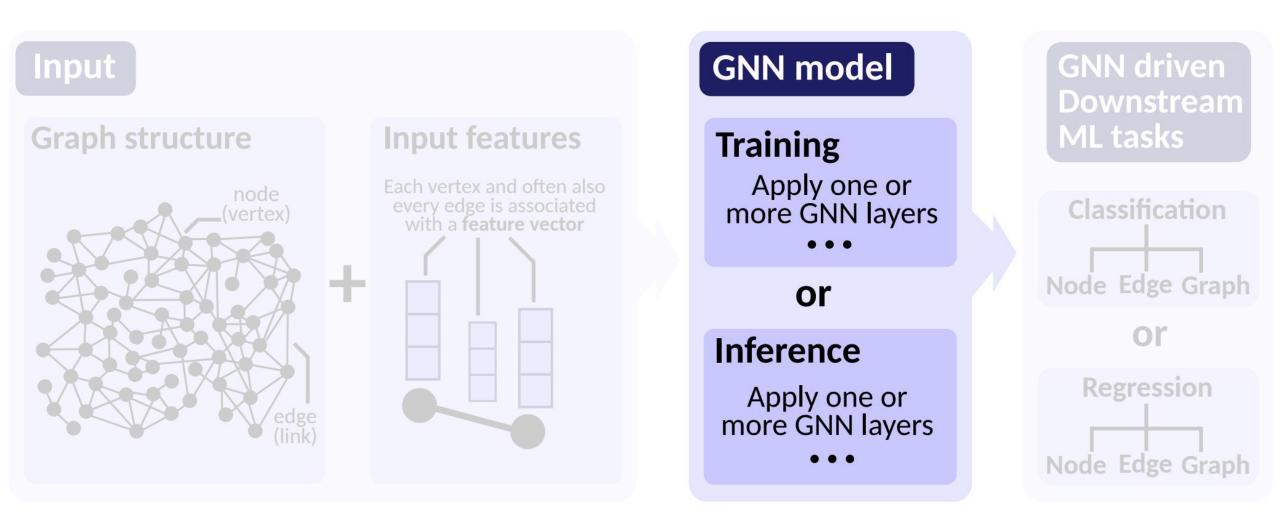


Dependencies between samples in GNNs



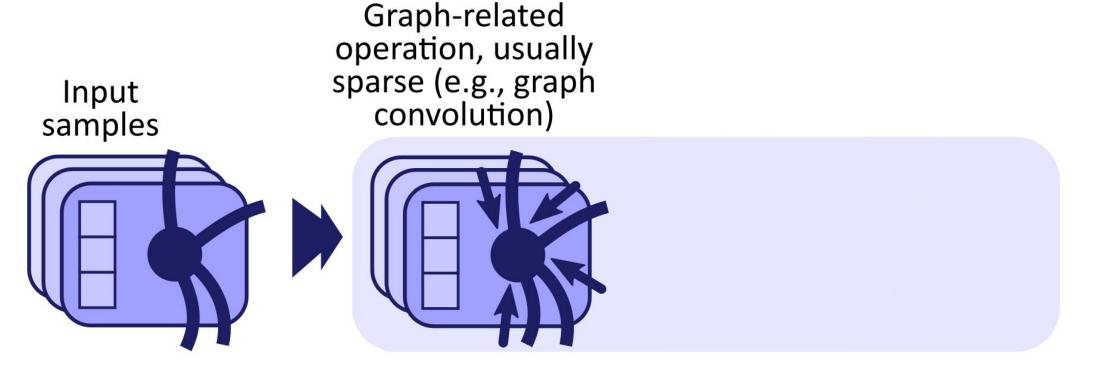
Dependencies between samples in GNNs


Even in independent graph case, there are intra-sample dependencies



Dependencies between samples in GNNs Even in independent graph case, there are intra-sample dependencies

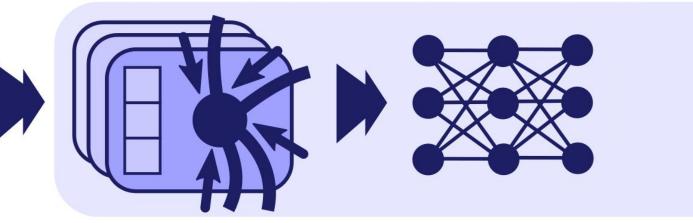
Character a trail


A Single GNN Layer

The stand the second second

A Single GNN Layer

All Charles and


Input

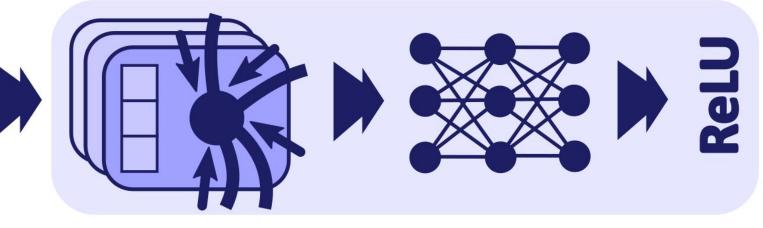
samples

A Single GNN Layer

Graph-related operation, usually sparse (e.g., graph convolution) Neural network related operation, usually dense (e.g., MLP)

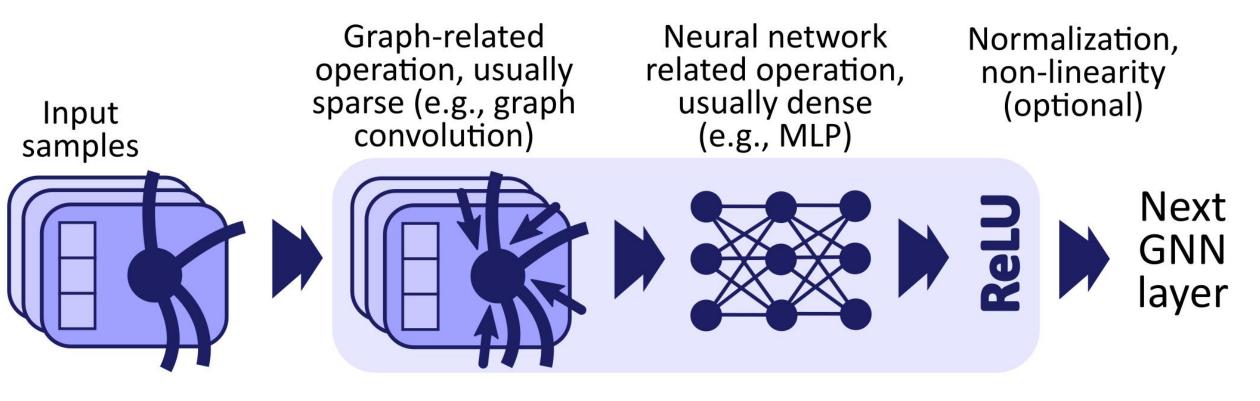
to the section of

Input

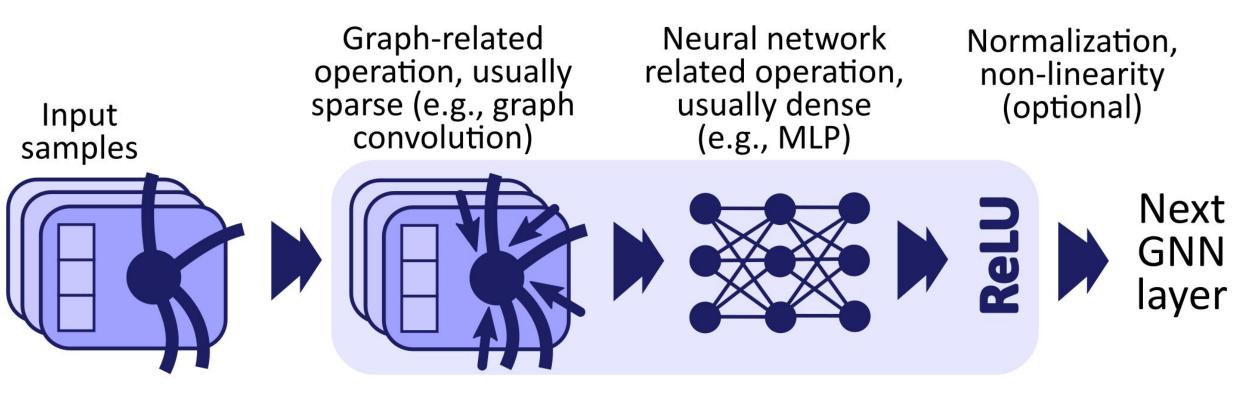

samples

A Single GNN Layer

Graph-related operation, usually sparse (e.g., graph convolution) Neural network related operation, usually dense (e.g., MLP)

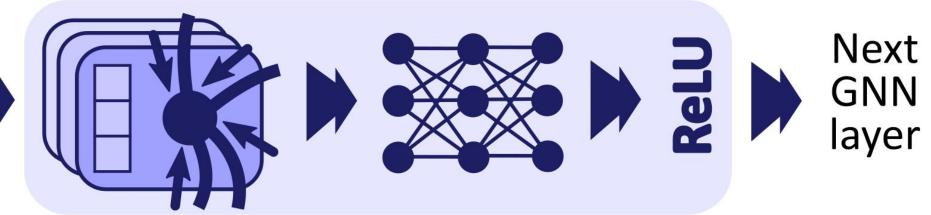

the second

Normalization, non-linearity (optional)


A Single GNN Layer

The second

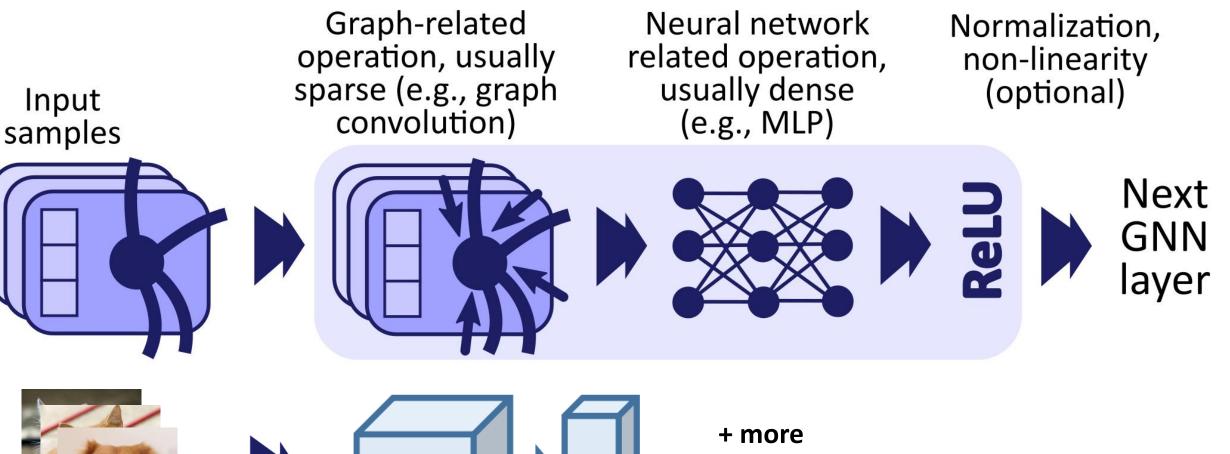
Layers: GNNs vs. Traditional DL



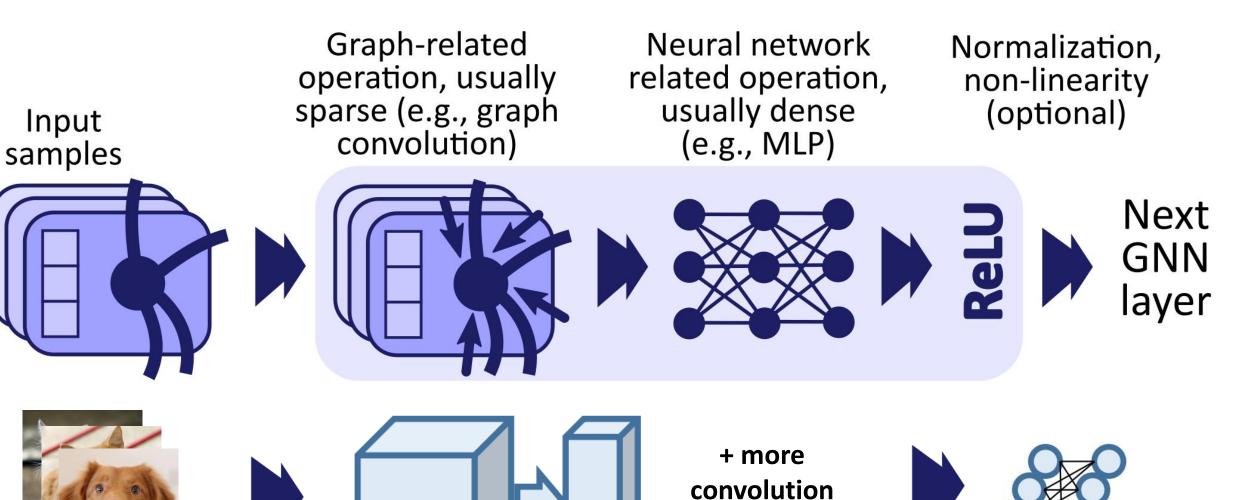
Input

samples

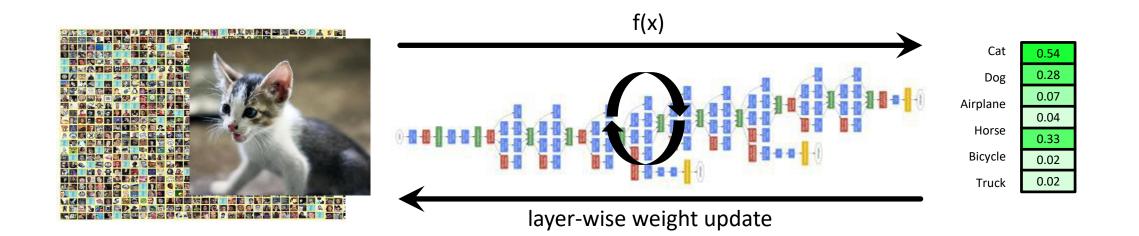
Layers: GNNs vs. Traditional DL


Graph-related operation, usually sparse (e.g., graph convolution) Neural network related operation, usually dense (e.g., MLP) Normalization, non-linearity (optional)

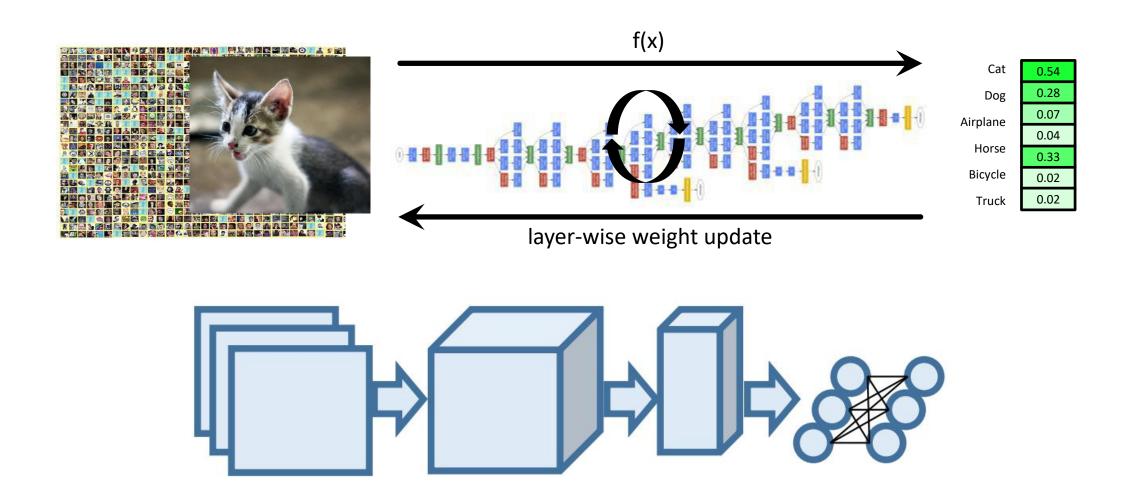
Layers: GNNs vs. Traditional DL



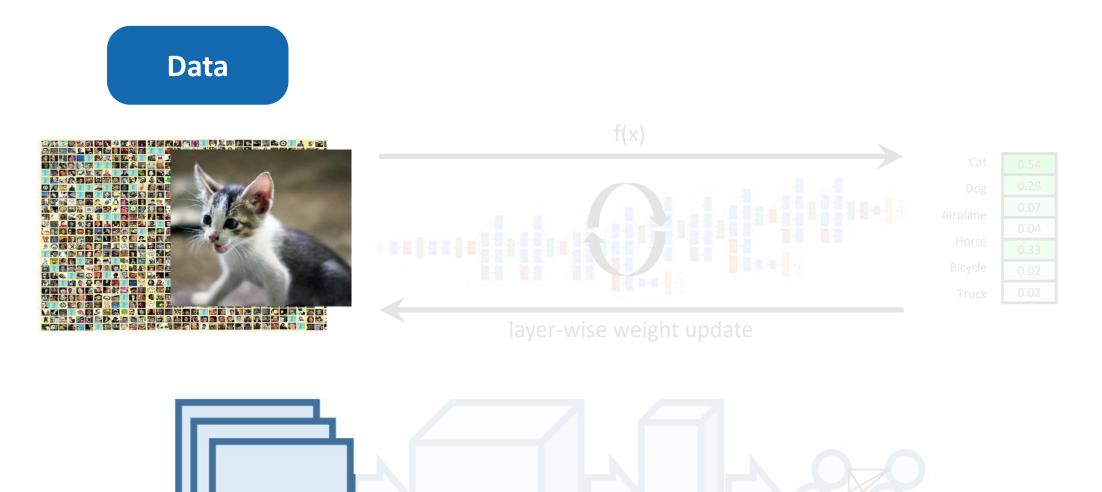
+ more convolution layers

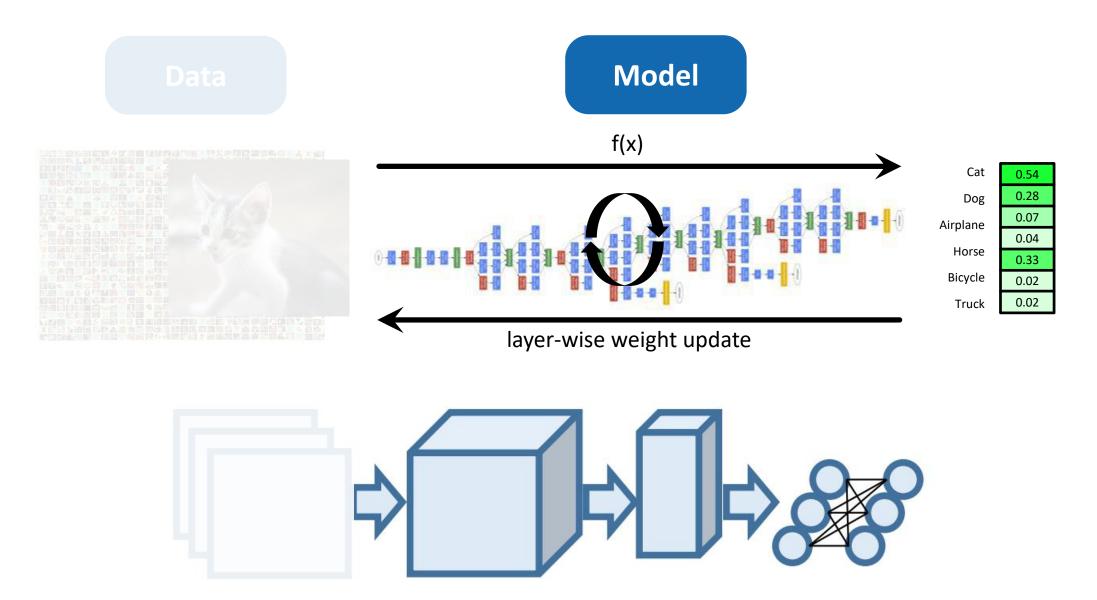

Layers: GNNs vs. Traditional DL

layers



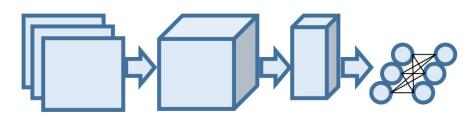
Parallelism in Traditional Deep Learning

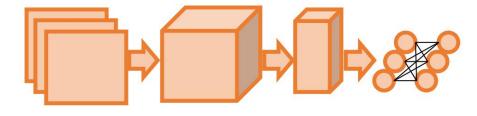

Parallelism in Traditional Deep Learning

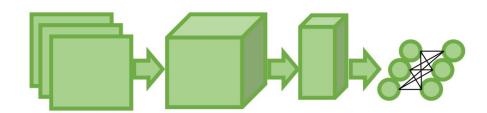

the sectors

Parallelism in Traditional Deep Learning

Contraction and

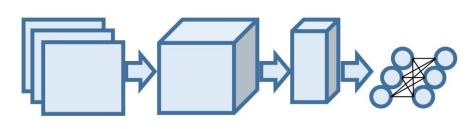

All Charles and

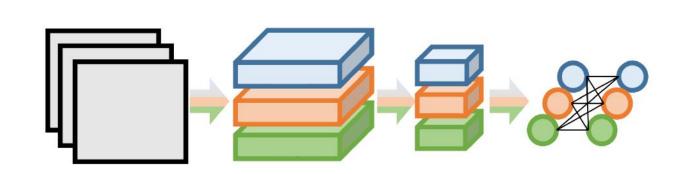


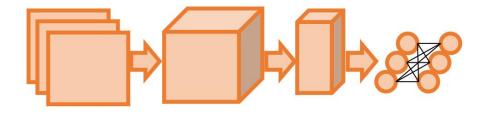


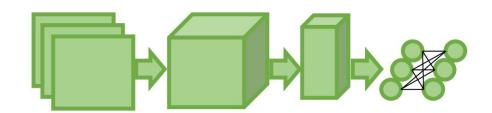
Different colors correspond to different (parallel) workers

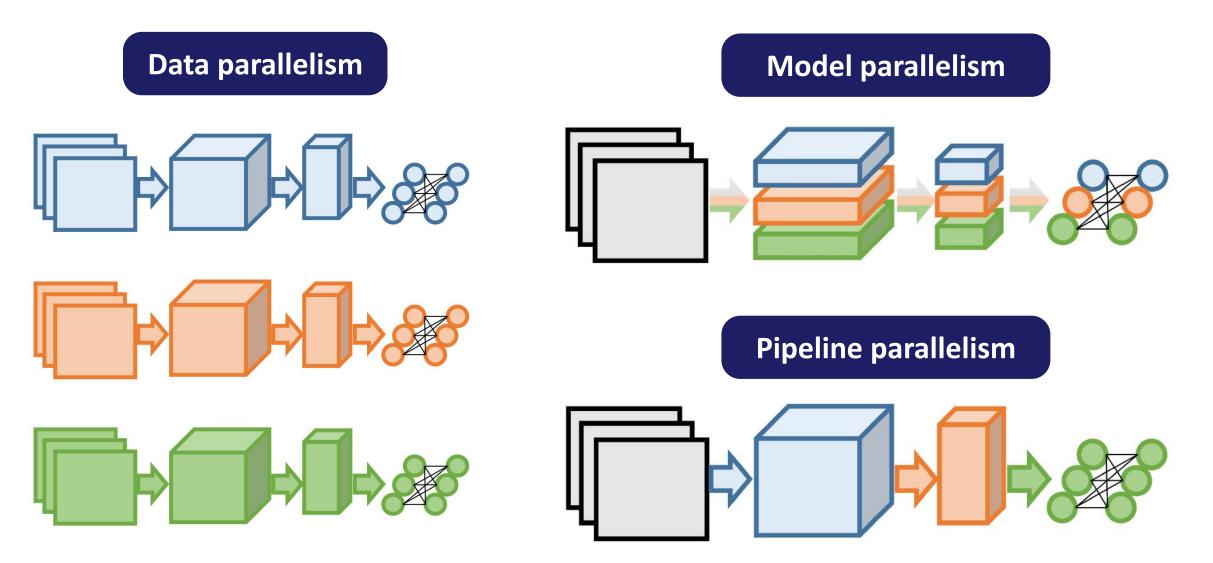
Data parallelism



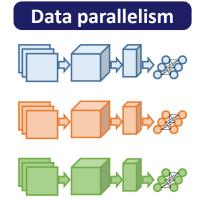



Different colors correspond to different (parallel) workers

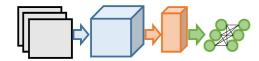

Data parallelism


Model parallelism

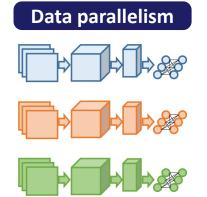
Different colors correspond to different (parallel) workers

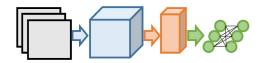

Pictures taken from: "Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis", T. Ben-Nun, T. Hoefler, ACM CSUR, 2018

Parallelism in Traditional Deep Learning vs. GNNs


Different colors correspond to different (parallel) workers

The second second


Pipeline parallelism

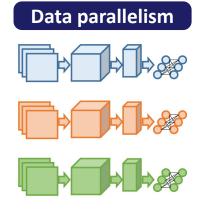

Parallelism in Traditional Deep Learning vs. GNNs

Different colors correspond to different (parallel) workers

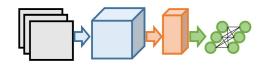
Pipeline parallelism

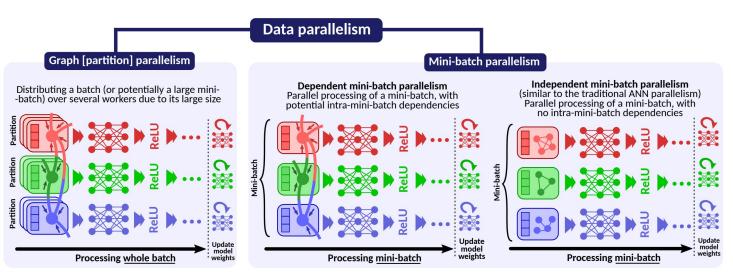
Data parallelism

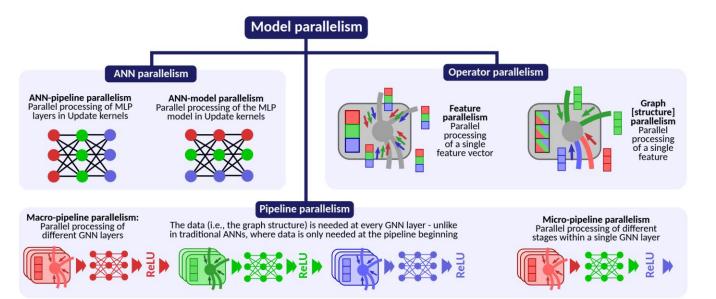
A Real Property Property


Model parallelism

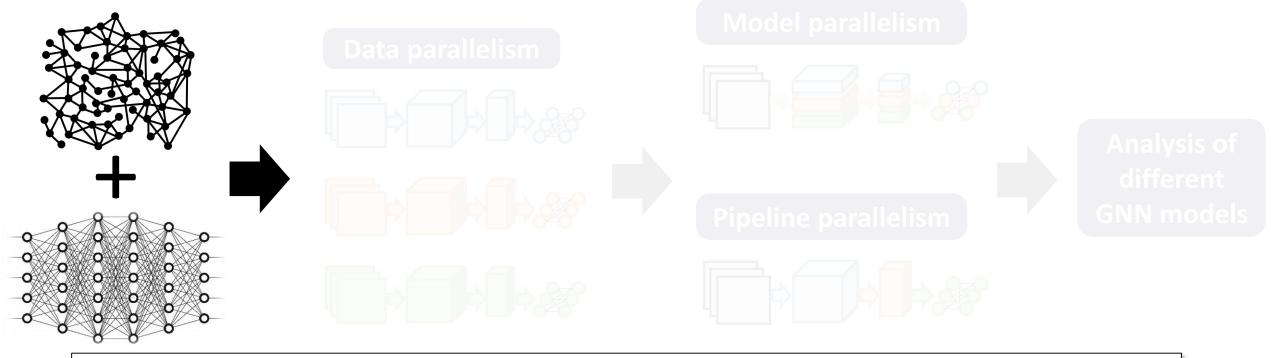
Pipeline parallelism


Parallelism in Traditional Deep Learning vs. GNNs

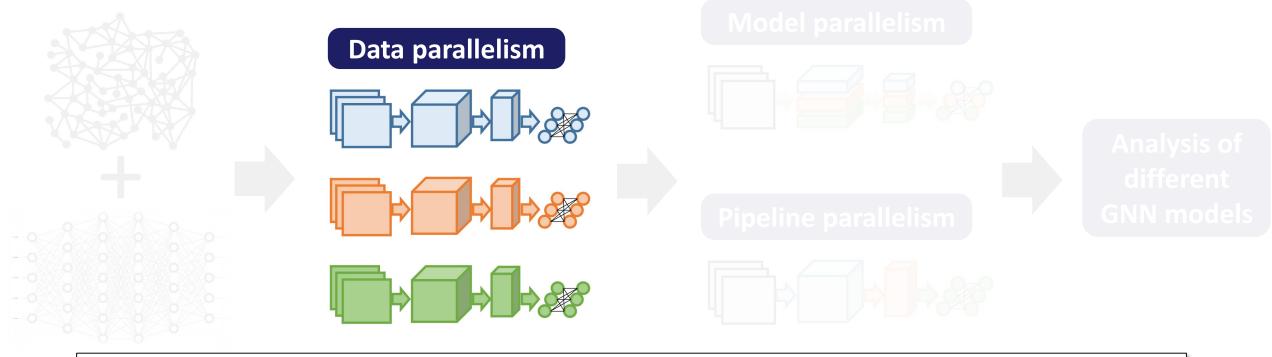

Different colors correspond to different (parallel) workers



Pipeline parallelism



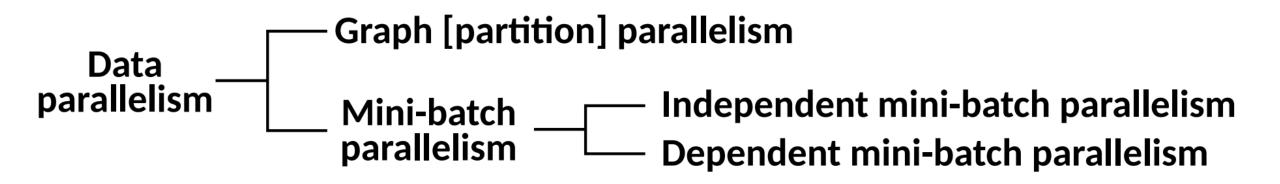
Presentation Overview

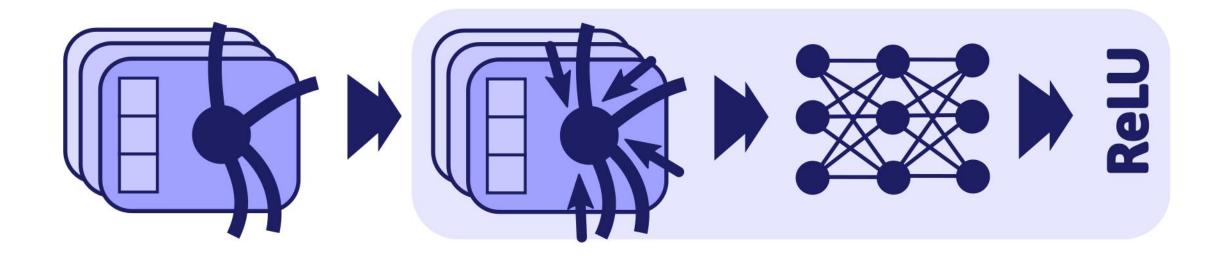

AT A CONTRACTOR

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

Maciej Besta and Torsten Hoefler Department of Computer Science, ETH Zurich

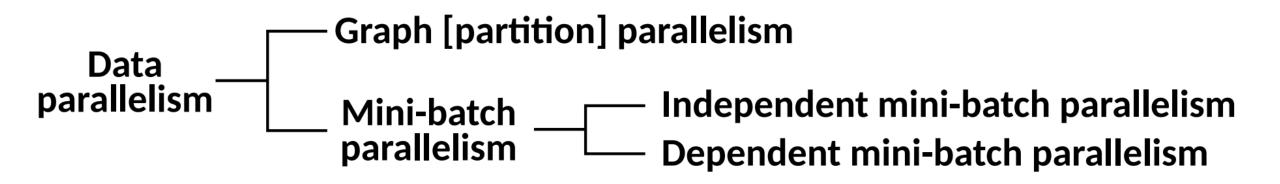
Presentation Overview




Providence in the second

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

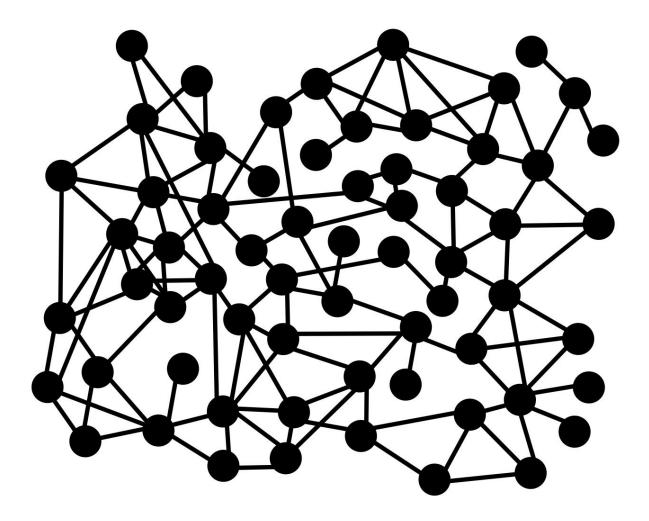
Maciej Besta and Torsten Hoefler Department of Computer Science, ETH Zurich



spcl.inf.ethz.ch

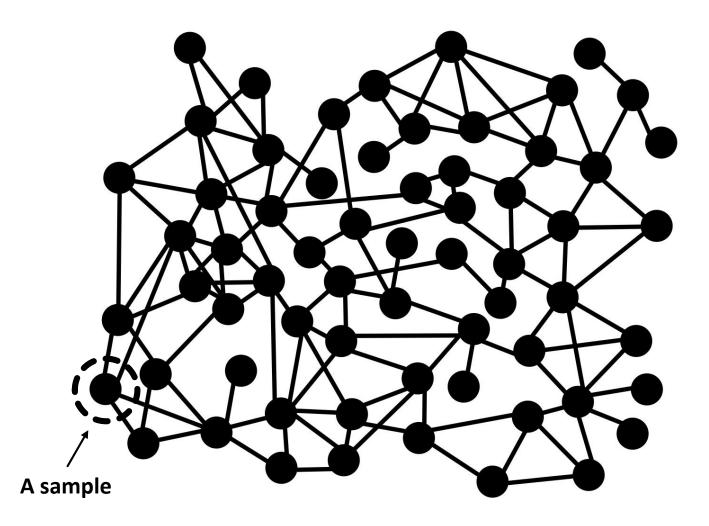
@spcl eth

ETH zürich

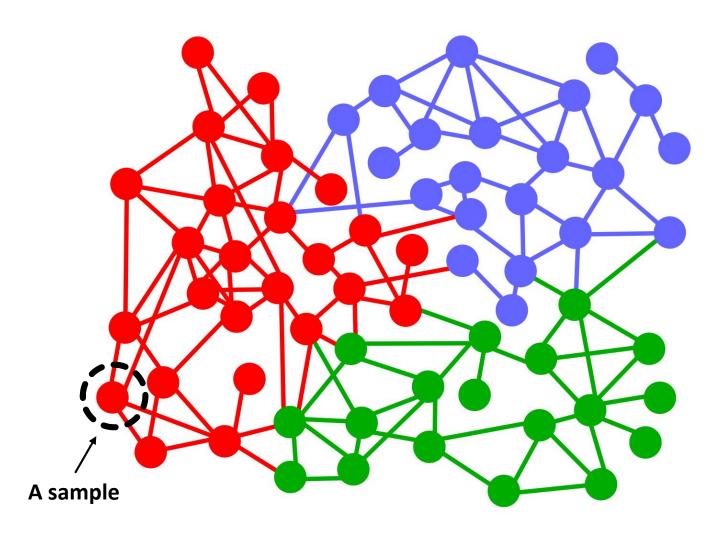

spcl.inf.ethz.ch

🅤 @spcl_eth

ETHzürich

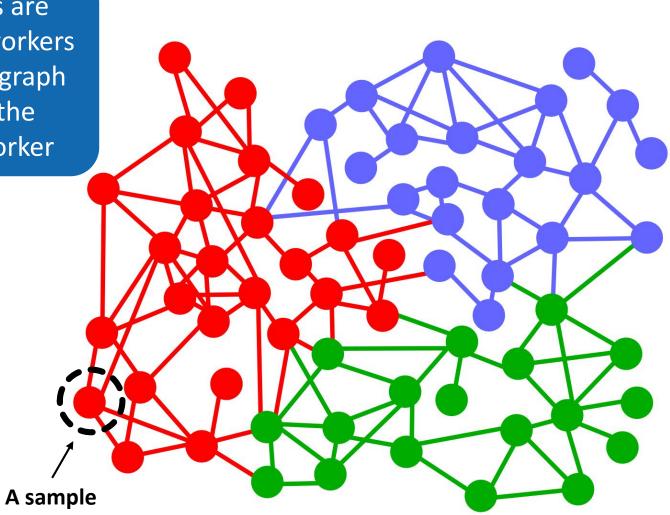

Graph [partition] parallelism

the second


Graph [partition] parallelism

No.

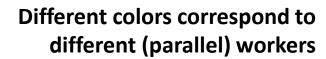
Graph [partition] parallelism

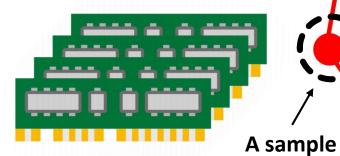


the second

Graph [partition] parallelism

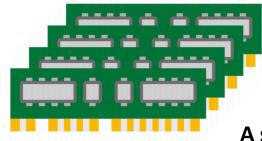
Why use: Samples are partitioned across workers because the whole graph does not fit into the memory of one worker



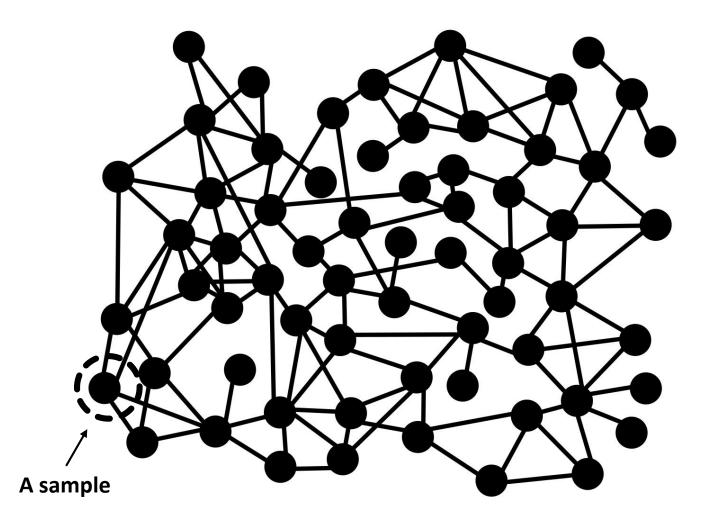


Graph [partition] parallelism

Why use: Samples are partitioned across workers because the whole graph does not fit into the memory of one worker

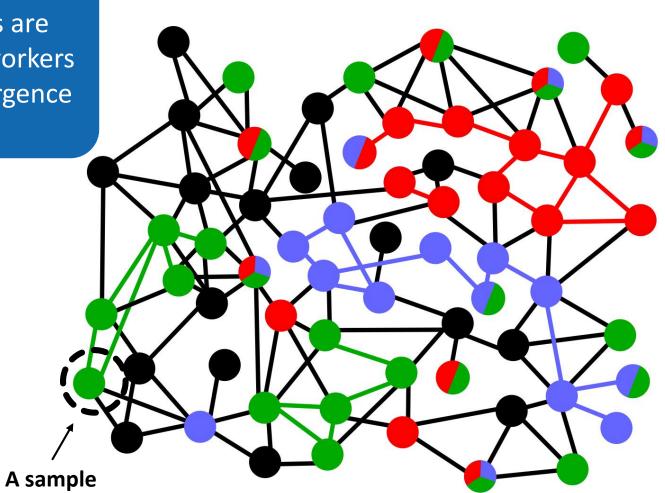


Graph [partition] parallelism


Why use: Samples are partitioned across workers because the whole graph does not fit into the memory of one worker

Each vertex and/or edge falls into some partition

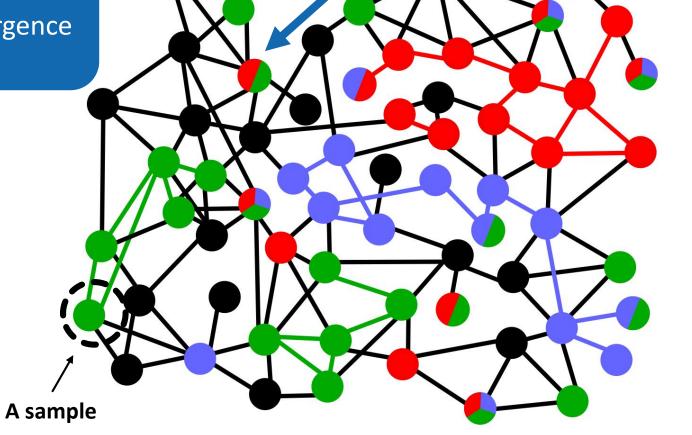
Dependent mini-batch parallelism



172

Why use: Samples are partitioned across workers to accelerate convergence

Dependent mini-batch parallelism



Dependent mini-batch parallelism

Samples may fall into more than one mini-batch

Different colors correspond to different (parallel) workers

Why use: Samples are partitioned across workers to accelerate convergence

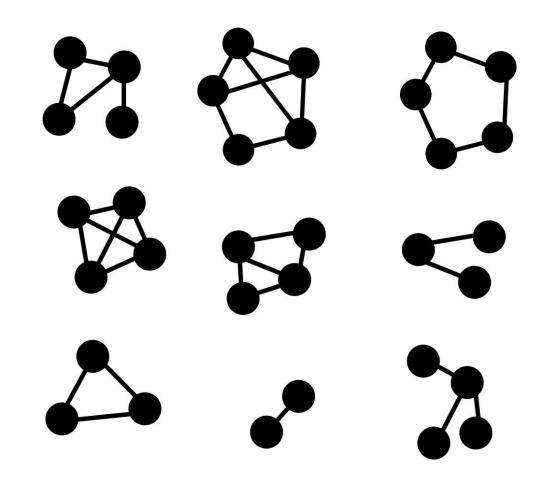
Dependent mini-batch parallelism

A sample

Samples may fall into more than one mini-batch

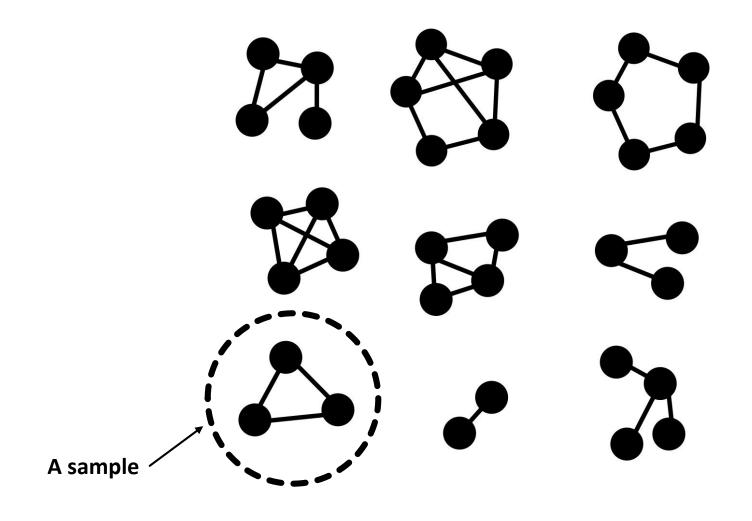
Different colors correspond to different (parallel) workers

Why use: Samples are partitioned across workers to accelerate convergence


Not all samples necessarily belong to a mini-batch

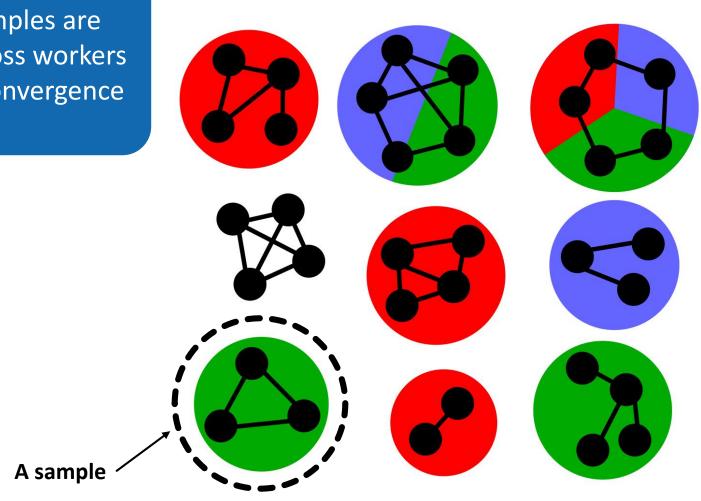
29

Independent mini-batch parallelism


(cf. stochastic mini-batch training)

Independent mini-batch parallelism

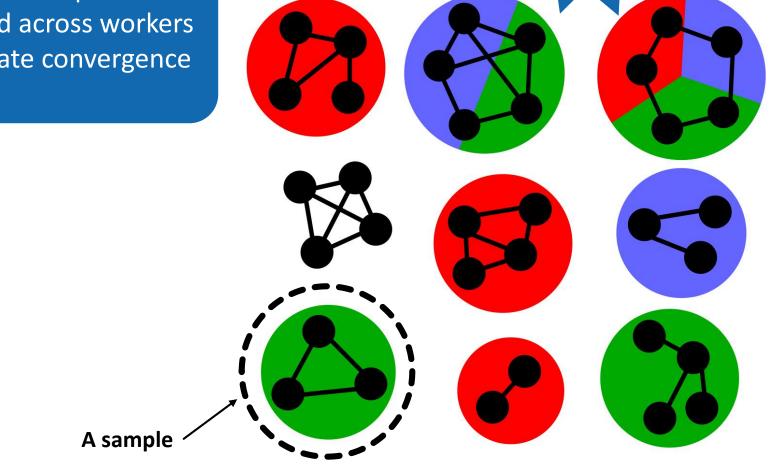
(cf. stochastic mini-batch training)



Independent mini-batch parallelism

(cf. stochastic mini-batch training)

Why use: Samples are partitioned across workers to accelerate convergence



***SPCL

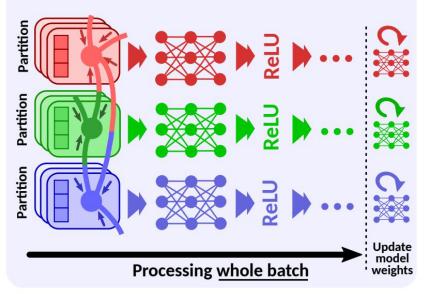
Independent mini-batch parallelism

(cf. stochastic mini-batch training)

Why use: Samples are partitioned across workers to accelerate convergence Samples may fall into more than one mini-batch

***SPCL

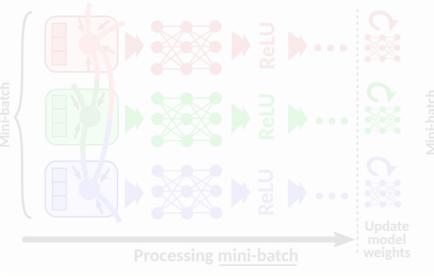
Independent mini-batch parallelism Samples may fall (cf. stochastic mini-batch training) into more than one mini-batch Why use: Samples are partitioned across workers to accelerate convergence Not all samples necessarily belong to a mini-batch A sample

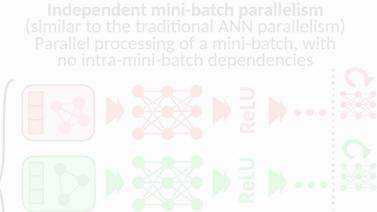

Graph partition vs. mini-batch parallelism

Graph partition vs. mini-batch parallelism

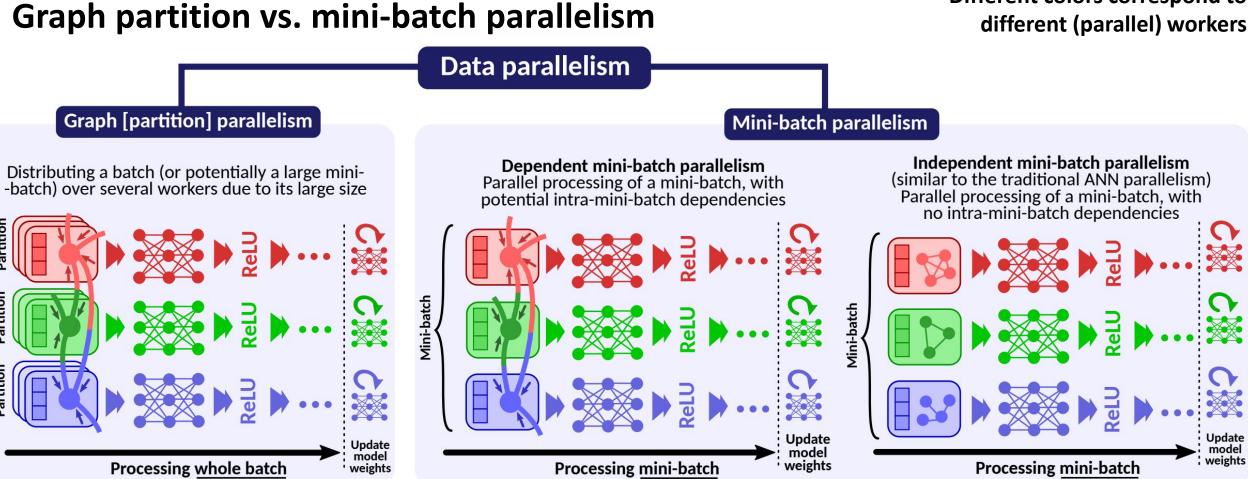
Different colors correspond to different (parallel) workers

Graph [partition] parallelism


Distributing a batch (or potentially a large mini--batch) over several workers due to its large size

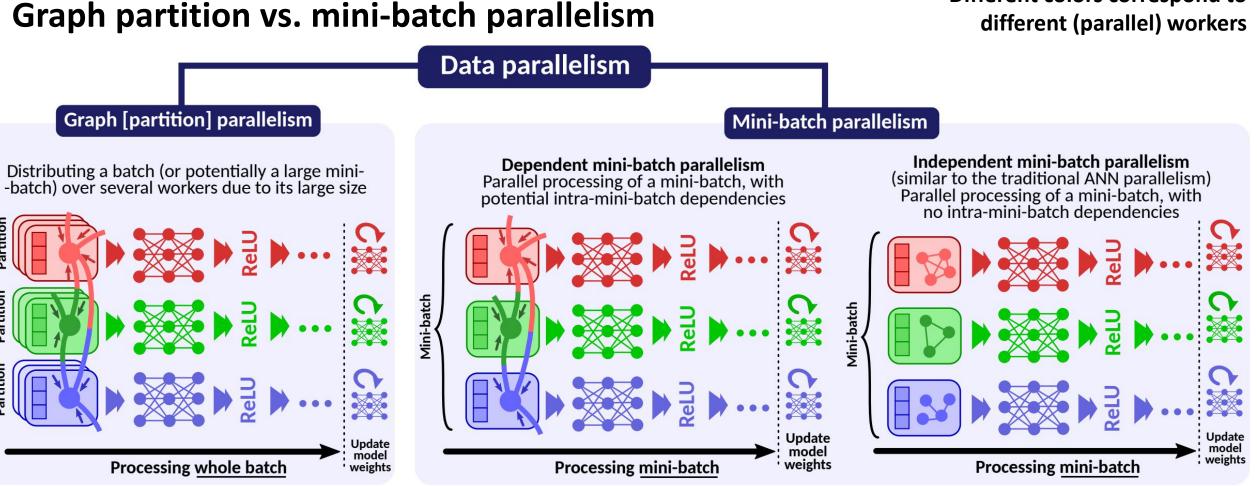


Data parallelism


Dependent mini-batch parallelism Parallel processing of a mini-batch, with potential intra-mini-batch dependencies

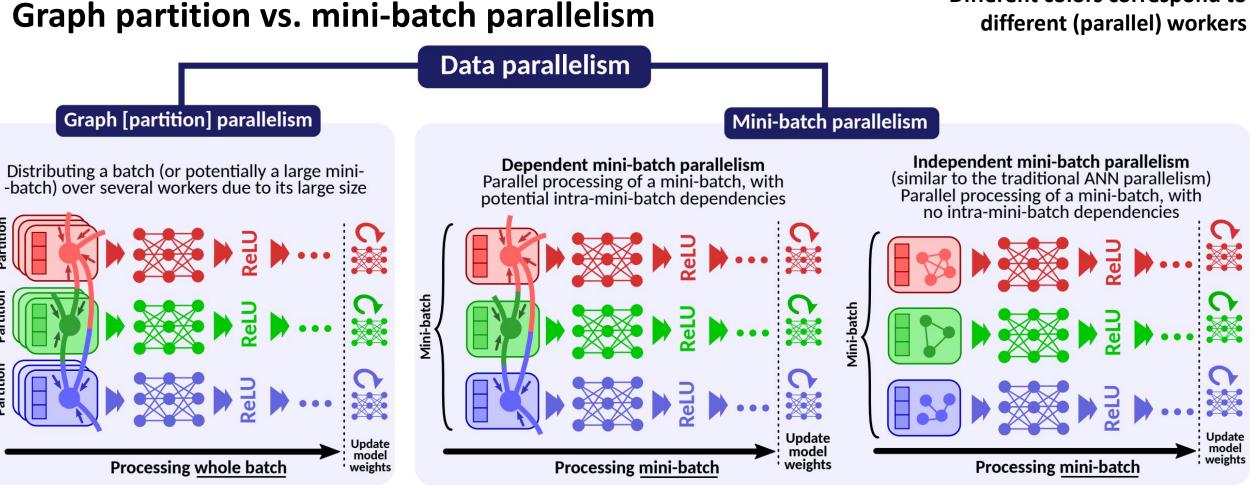
Partitior

artitio


Graph partition vs. mini-batch parallelism Data parallelism Graph [partition] parallelism Mini-batch parallelism Independent mini-batch parallelism **Dependent mini-batch parallelism** Distributing a batch (or potentially a large mini-(similar to the traditional ANN parallelism) Parallel processing of a mini-batch, with -batch) over several workers due to its large size Parallel processing of a mini-batch, with potential intra-mini-batch dependencies no intra-mini-batch dependencies Mini-batch Partitio Mini-batch Ð e Update Update model model weights **Processing mini-batch** Processing whole batch **Processing mini-batch** weights

Timing of updates to model weights

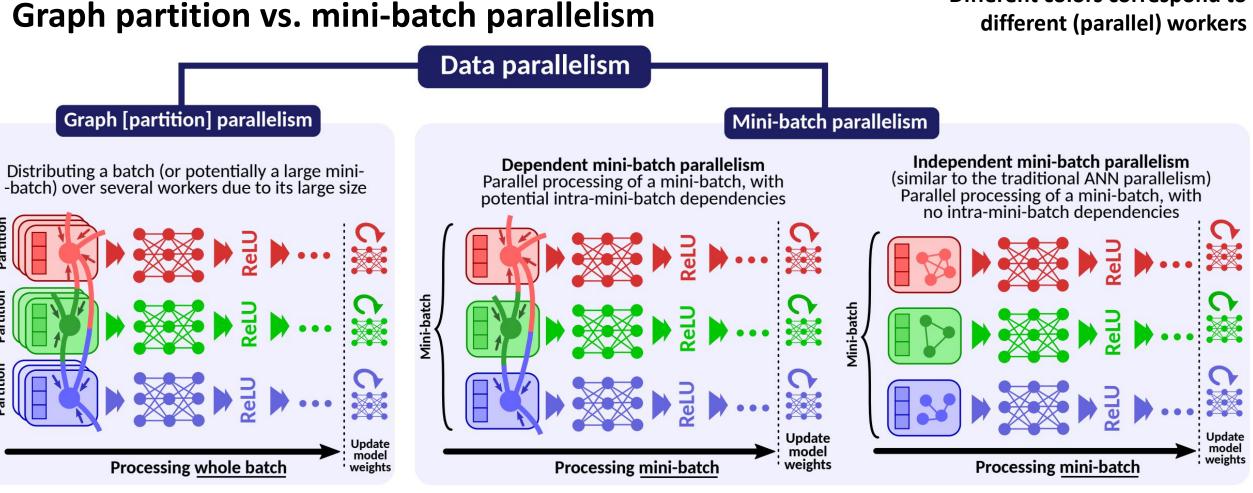
Update


model

weights

Reason for being incorporated

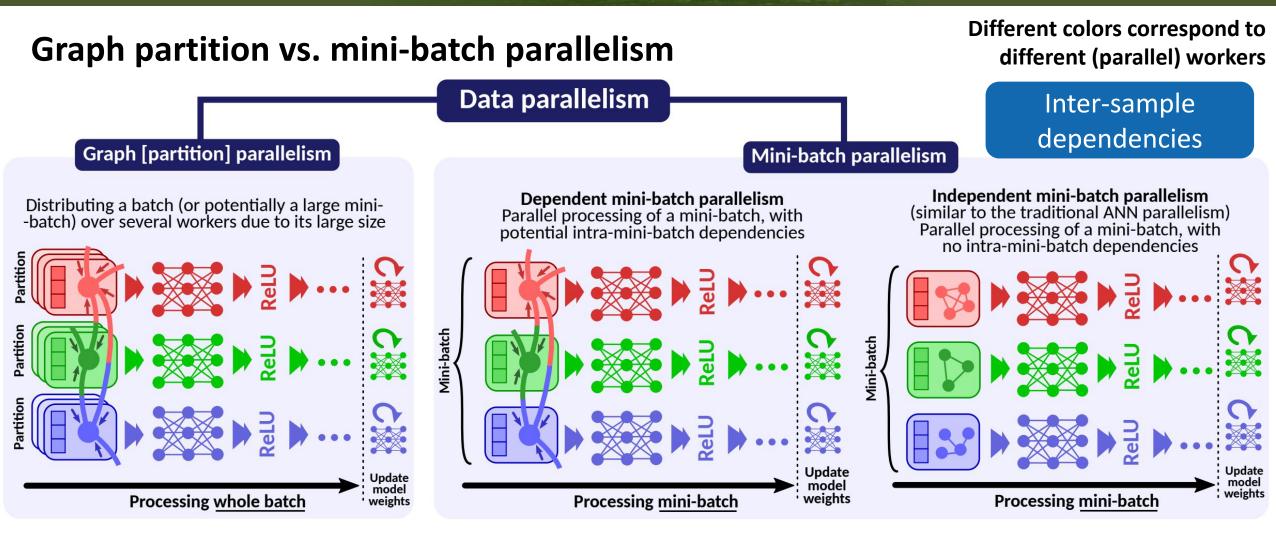
Timing of updates to model weights


Partitioning across workers

Reason for being incorporated

Timing of updates to model weights

Primary objective

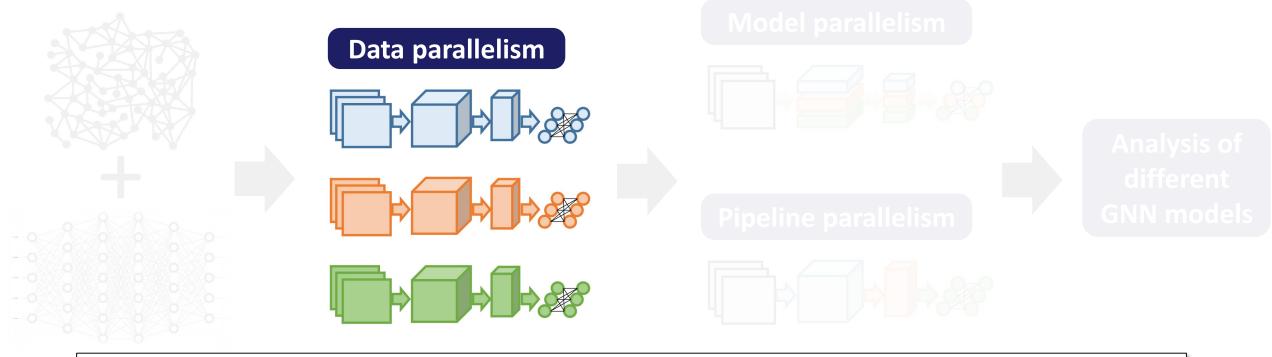

when partitioning

Partitioning across workers

Reason for being incorporated

Timing of updates to model weights

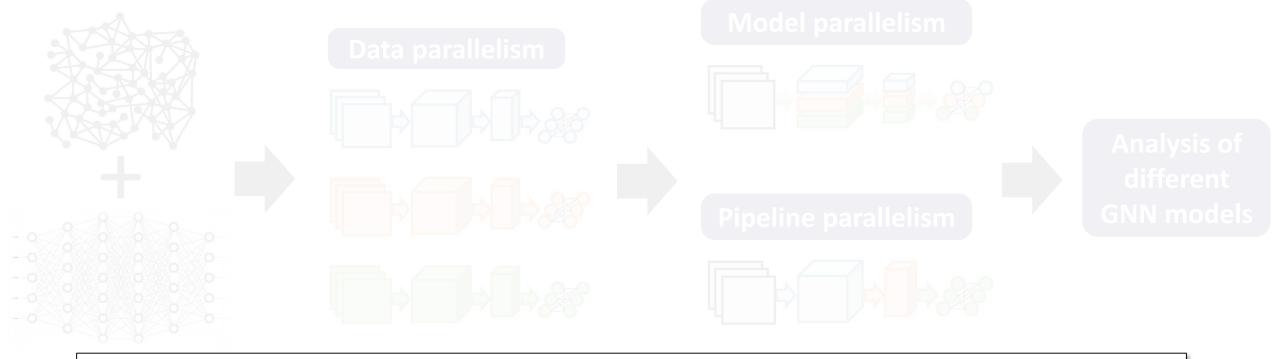
Partitioning across workers


Primary objective when partitioning

Reason for being incorporated

Timing of updates to model weights

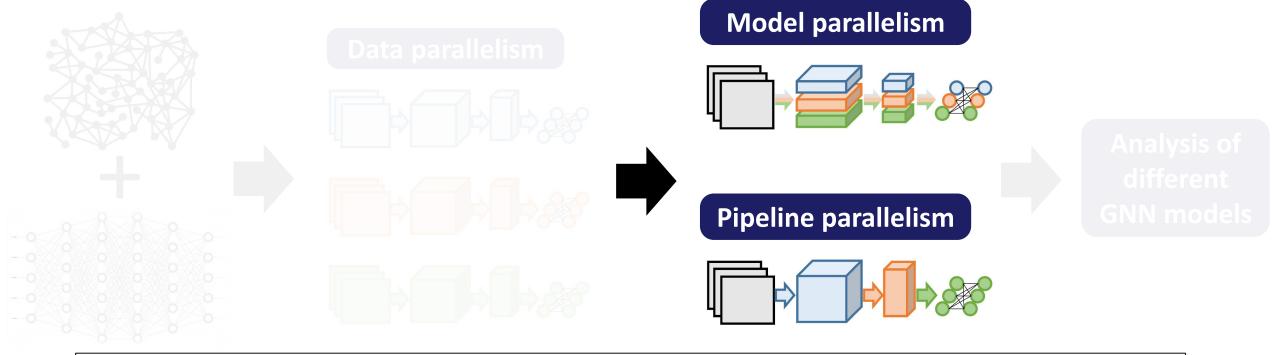
Presentation Overview



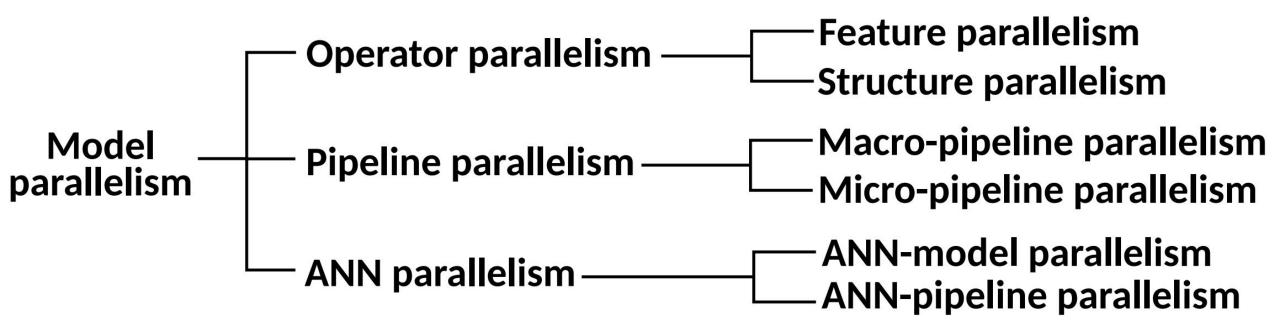
Providence in the second

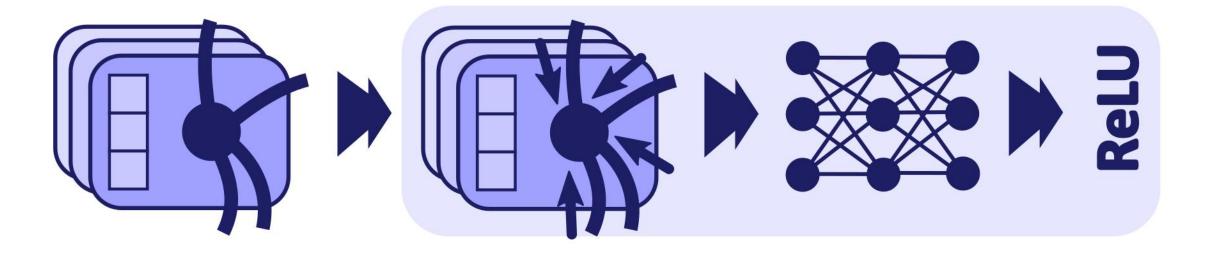
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

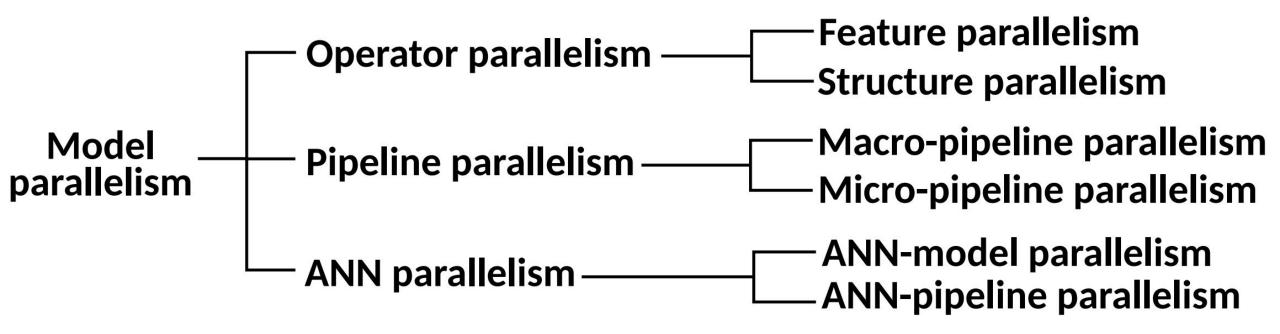
Maciej Besta and Torsten Hoefler Department of Computer Science, ETH Zurich

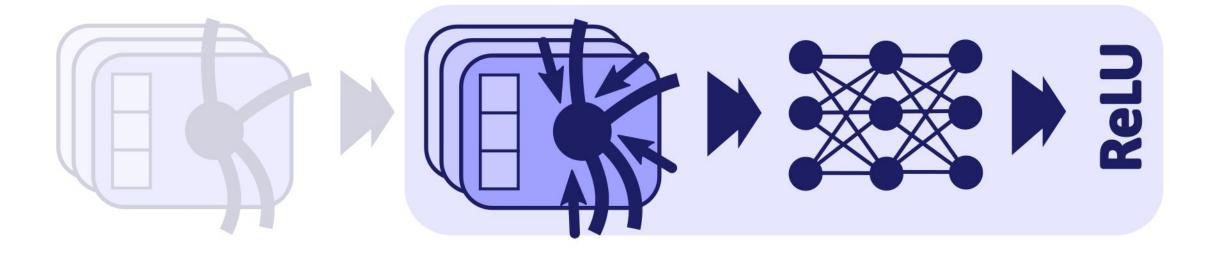


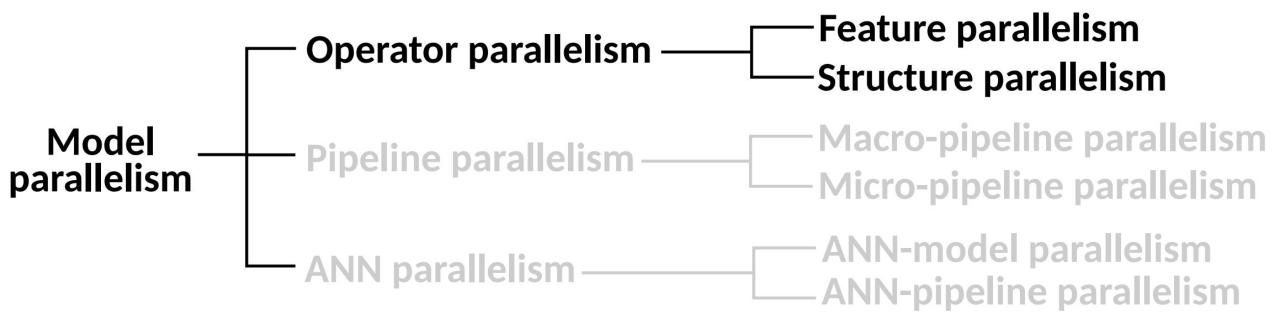
The second second second

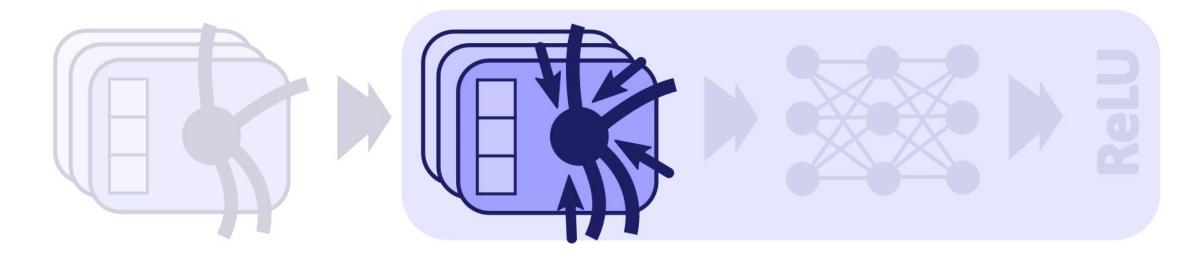

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

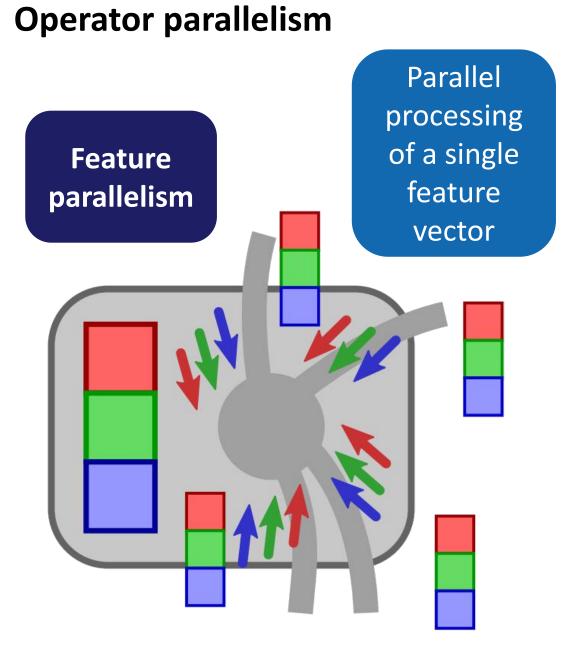



Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis



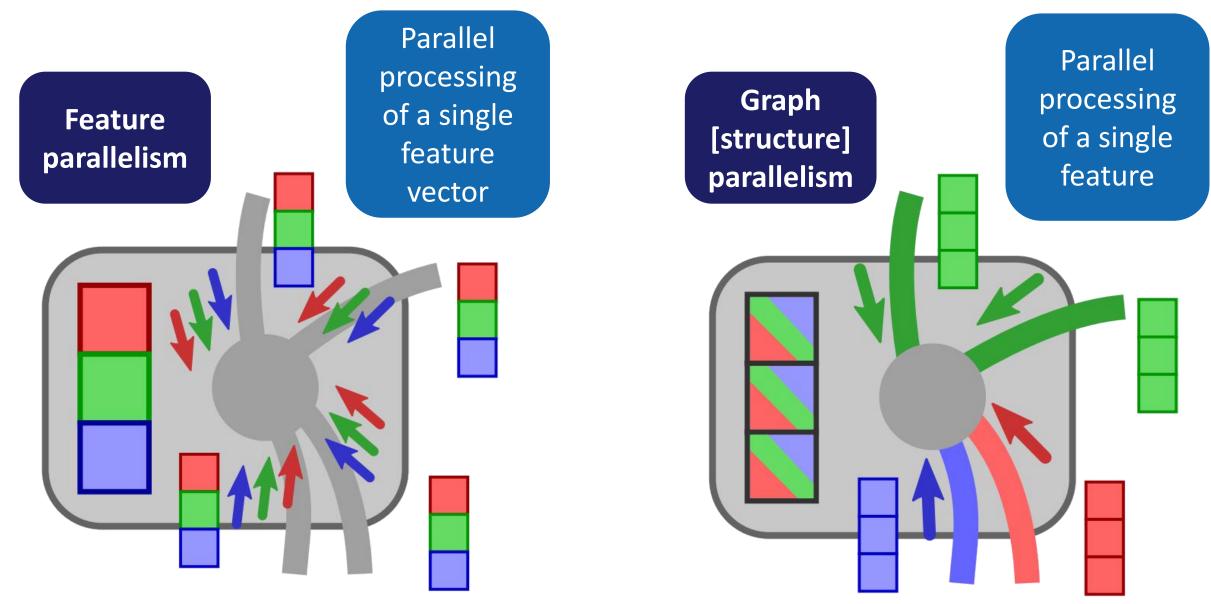


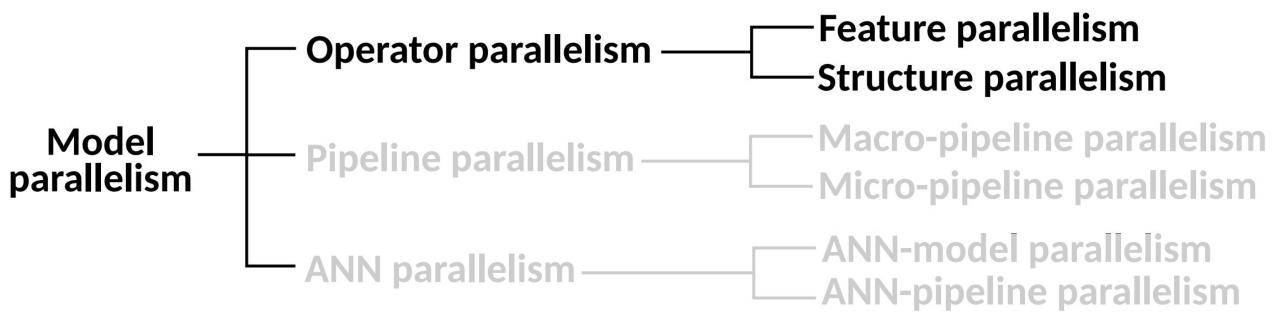


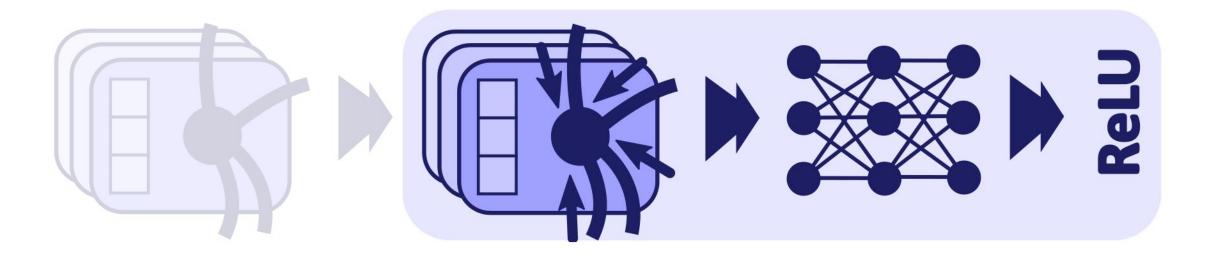


2 and and

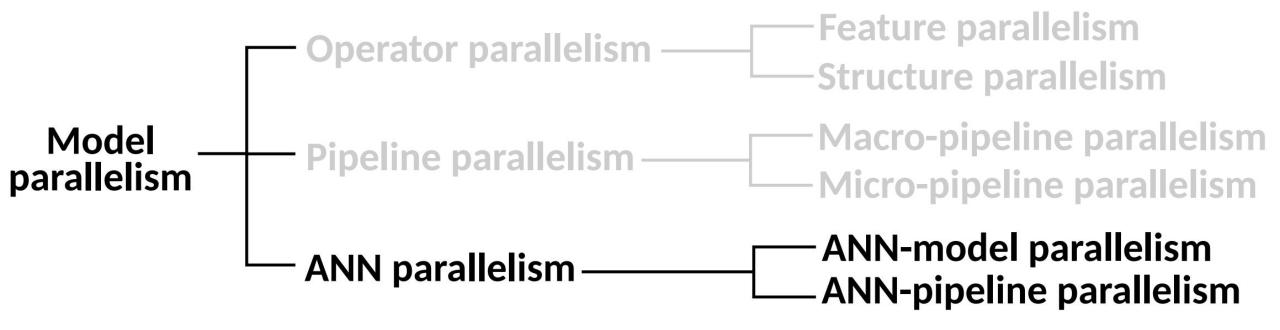
Operator parallelism



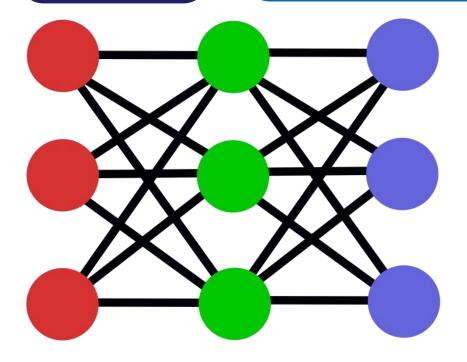

Operator parallelism


Different colors correspond to different (parallel) workers

34



Contraction and

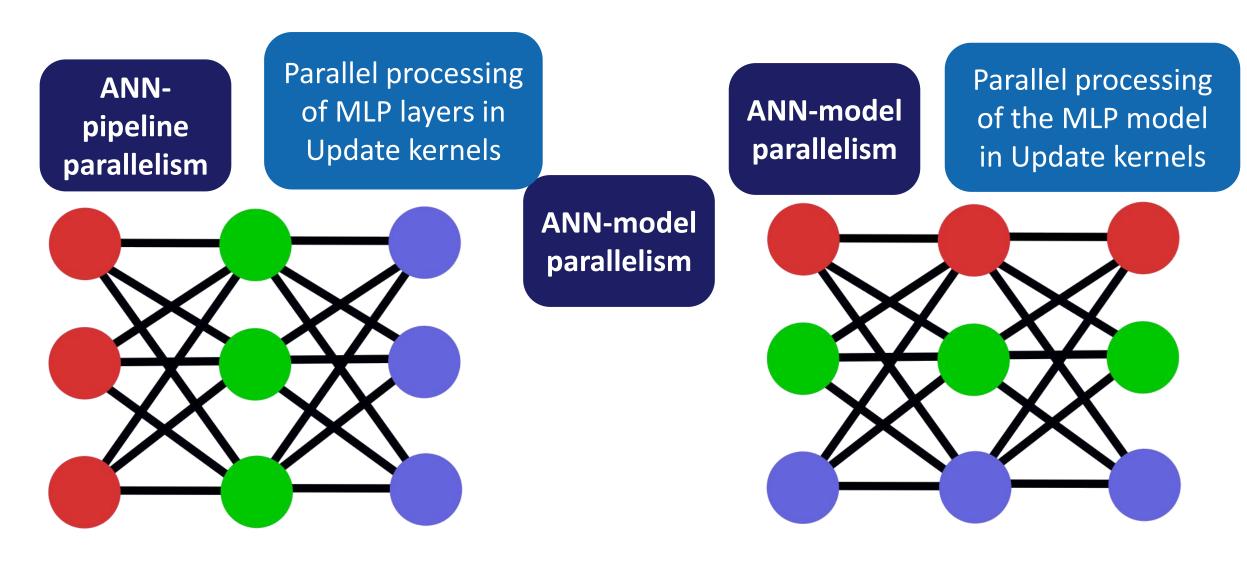

ANN parallelism

The second

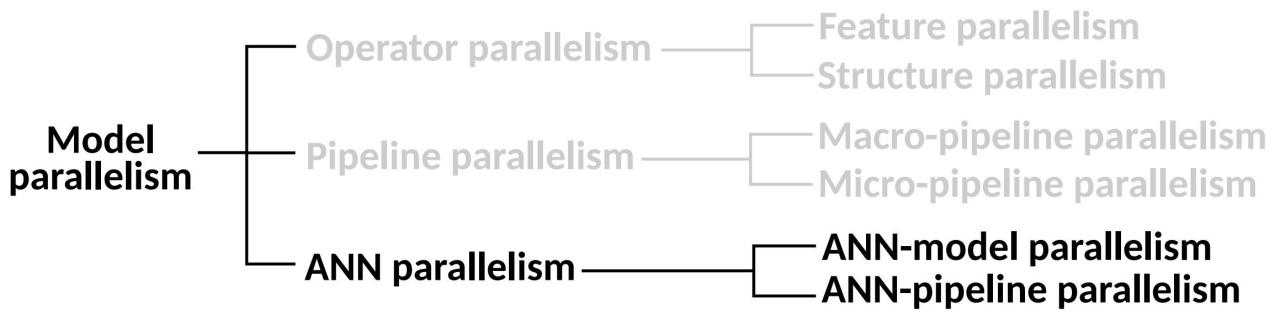
ANN parallelism

ANNpipeline parallelism

Parallel processing

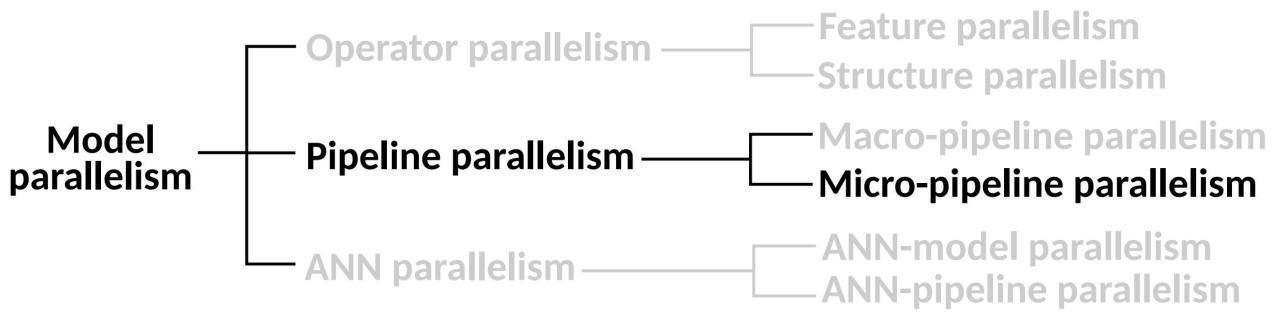

of MLP layers in

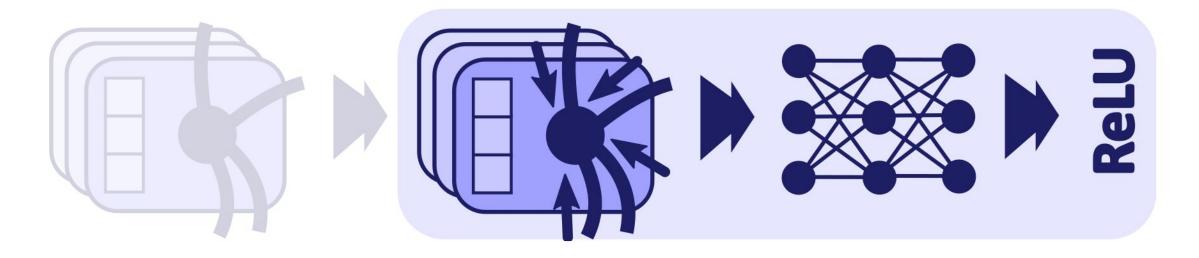
Update kernels

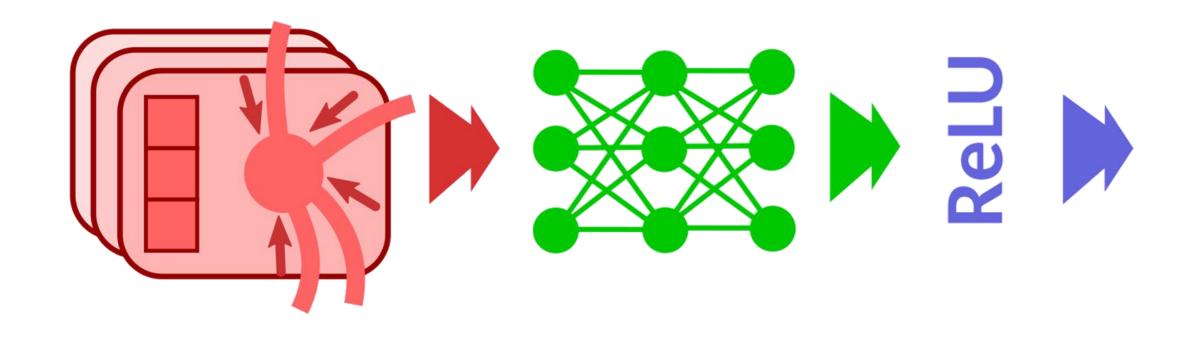


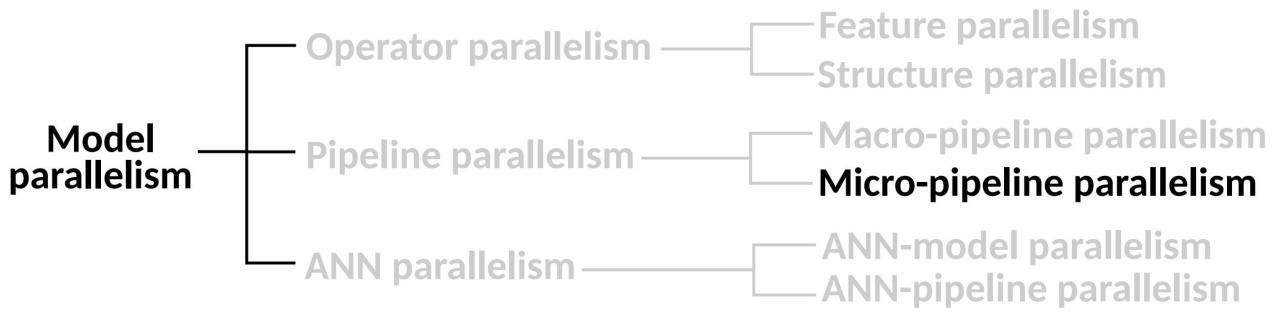
ANN parallelism

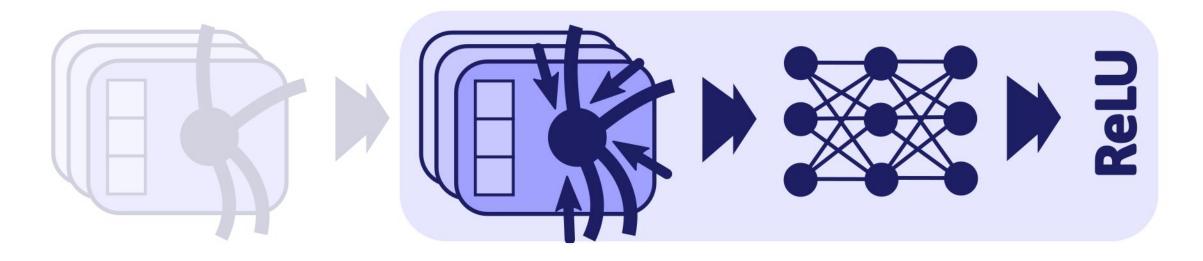
Different colors correspond to different (parallel) workers



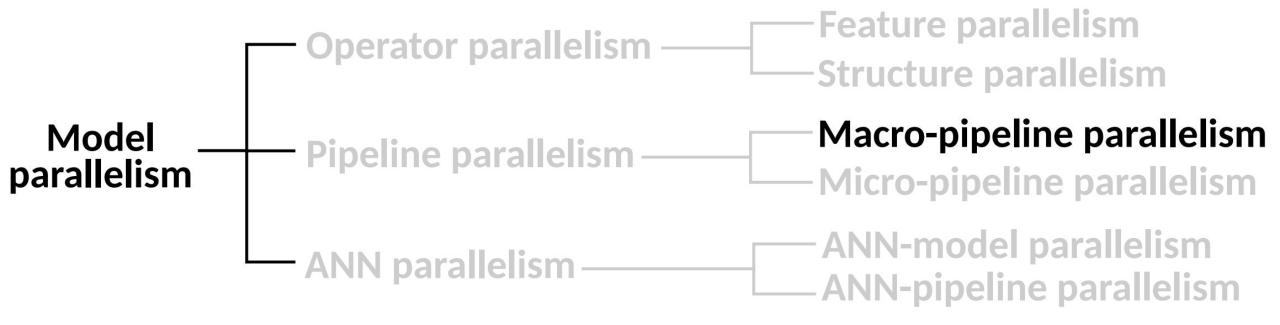


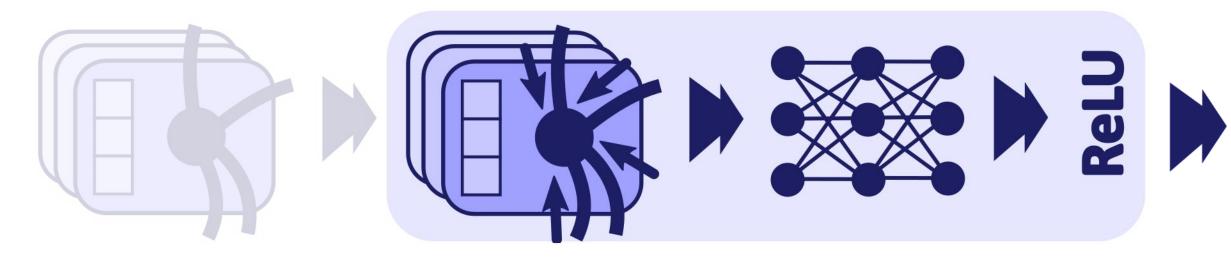


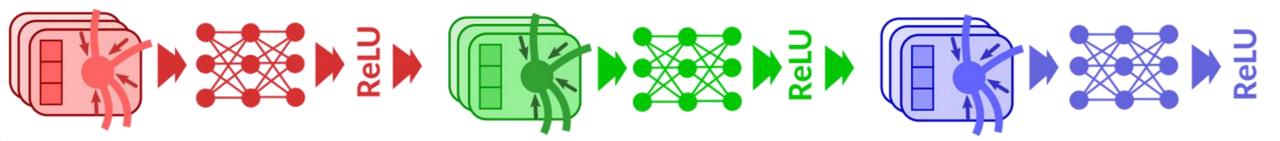



Pipeline parallelism

Micro-pipeline parallelism Parallel processing of different stages within a single GNN layer



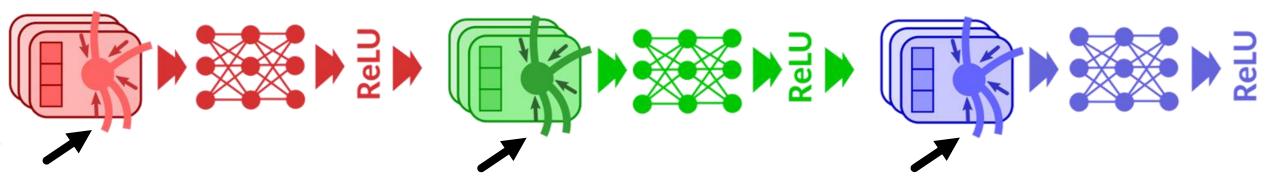




Pipeline parallelism

Macro-pipeline parallelism

Parallel processing of different GNN layers



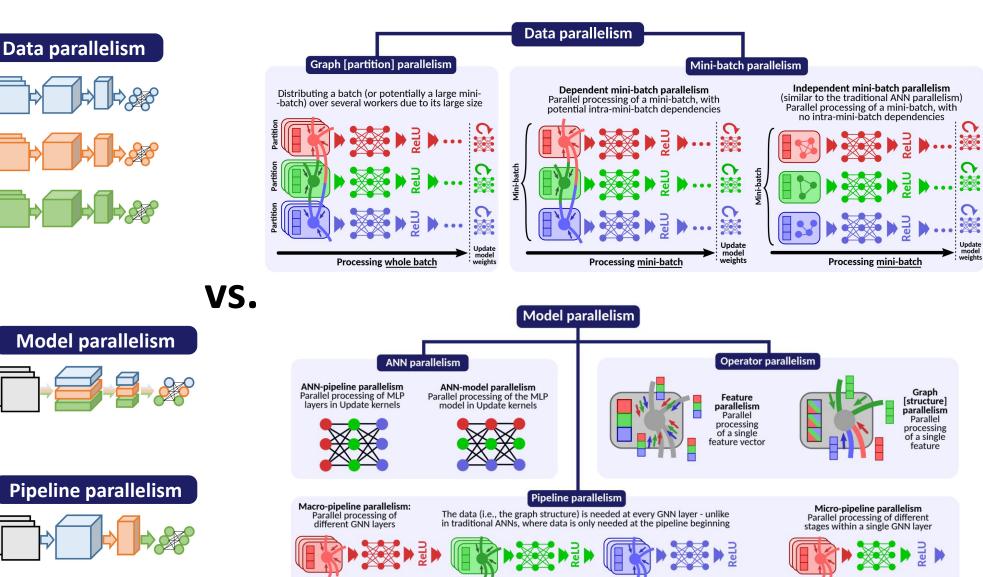
Pipeline parallelism

Macro-pipeline parallelism

Parallel processing of different GNN layers

The data (i.e., the graph structure) is needed at every GNN layer - unlike in traditional ANNs, where data is only needed at the pipeline beginning

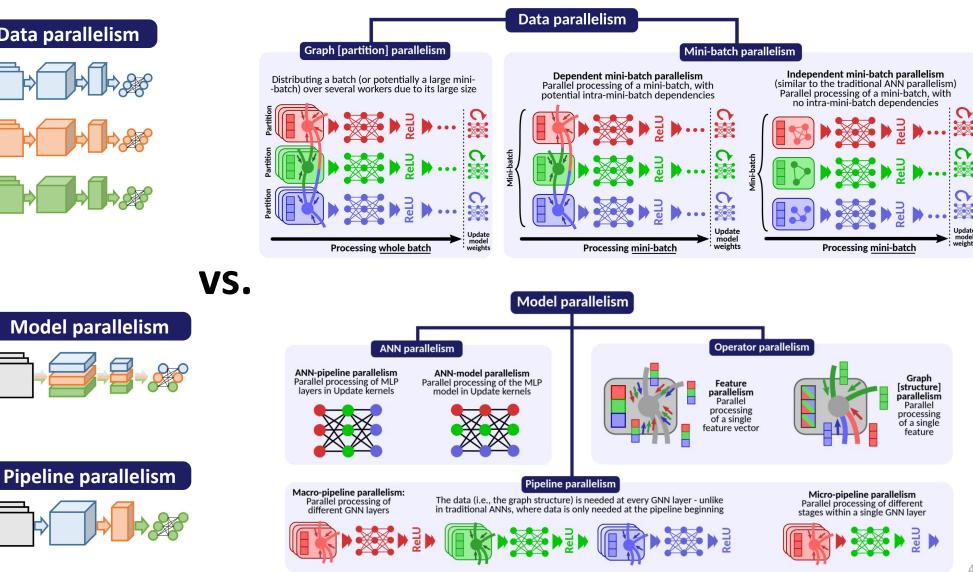
Different colors correspond to different (parallel) workers


Different colors correspond to different (parallel) workers

Parallelism in GNNs is **more complex** than in Traditional DL (dependencies!)

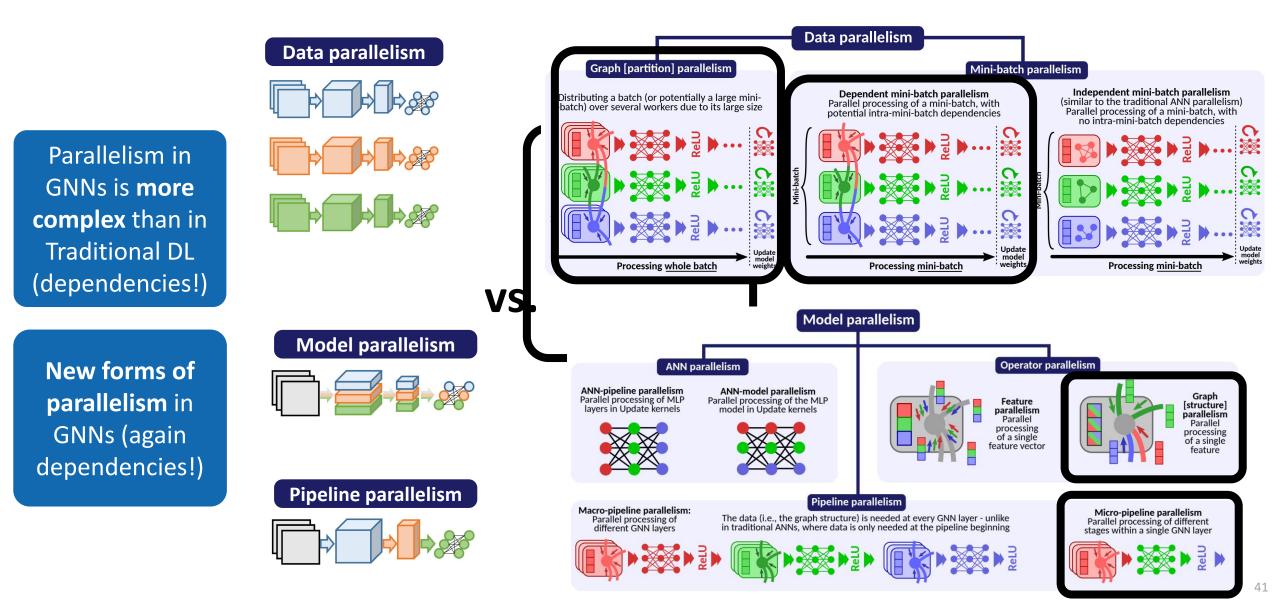
Different colors correspond to different (parallel) workers

Parallelism in GNNs is **more complex** than in Traditional DL (dependencies!)

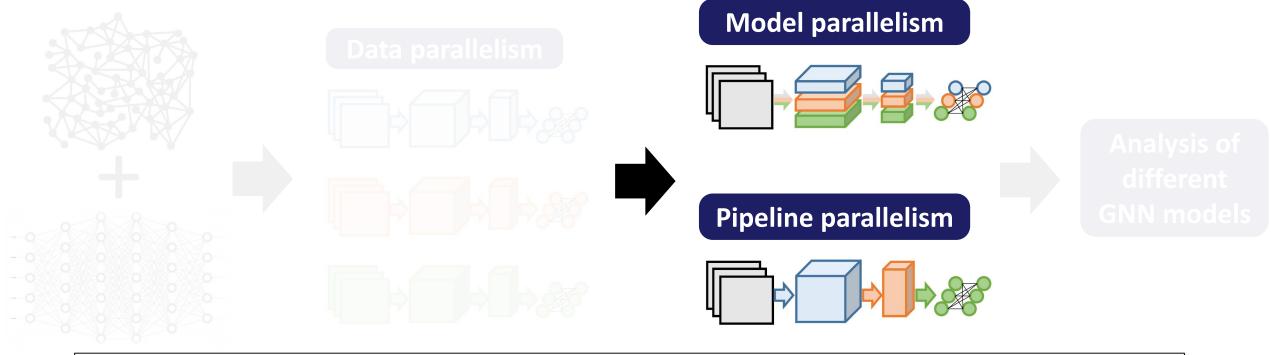


Data parallelism

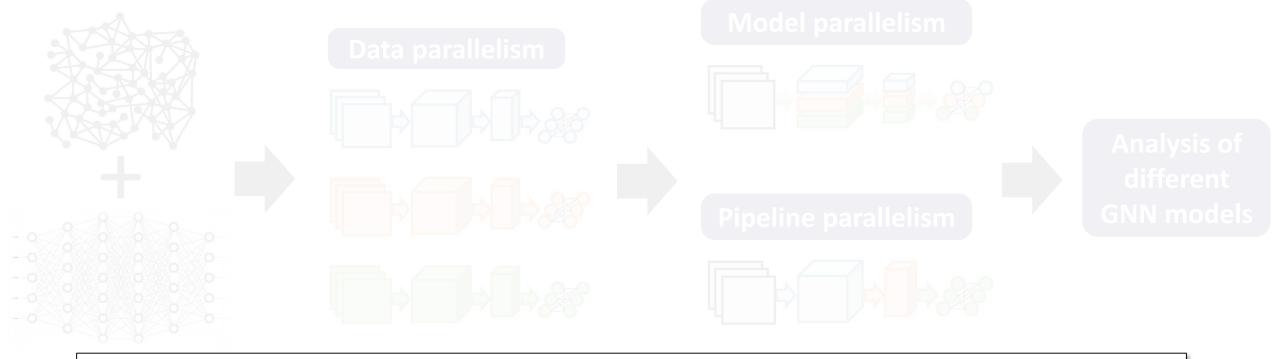
Different colors correspond to different (parallel) workers


Parallelism in GNNs is **more** complex than in Traditional DL (dependencies!)

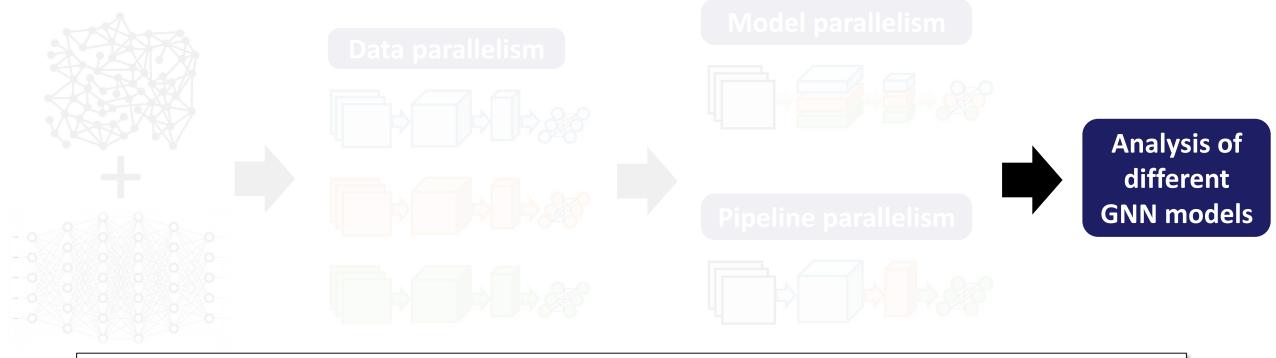
New forms of parallelism in **GNNs** (again dependencies!)



Different colors correspond to different (parallel) workers



Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis



The second second second

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

Local GNN formulations

Global GNN formulations

Part and the Part of the Part

Local GNN formulations

Formulations based on functions operating on single vertices & edges

Global GNN formulations

Local GNN formulations

Formulations based on functions operating on single vertices & edges

Global GNN formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Local GNN formulations

Formulations based on functions operating on single vertices & edges

Global GNN formulations

Vertex feature vector

$$\mathbf{\hat{h}}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

Local GNN formulations

Formulations based on functions operating on single vertices & edges

Global GNN formulations

Vertex feature vector

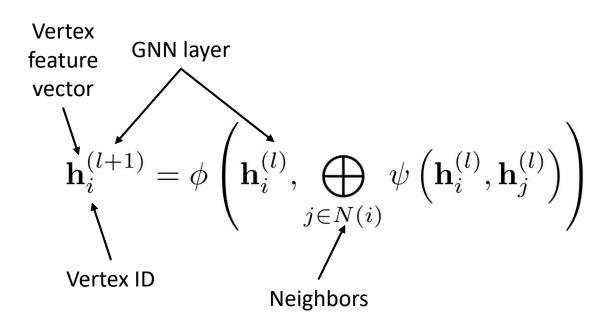
$$\begin{split} \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \end{split}$$

Vertex ID

Local GNN formulations

Formulations based on functions operating on single vertices & edges

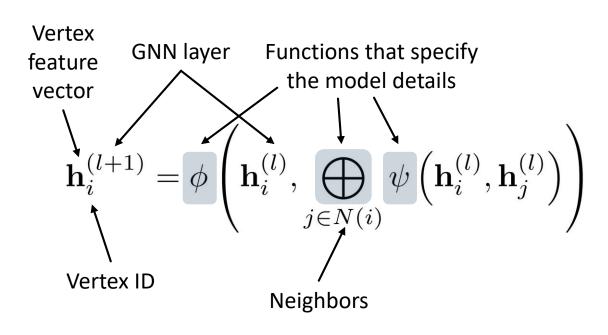
Global GNN formulations


Vertex feature vector

$$\begin{split} \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l+1)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{h}}_{i}^{(l)} &= \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

Local GNN formulations

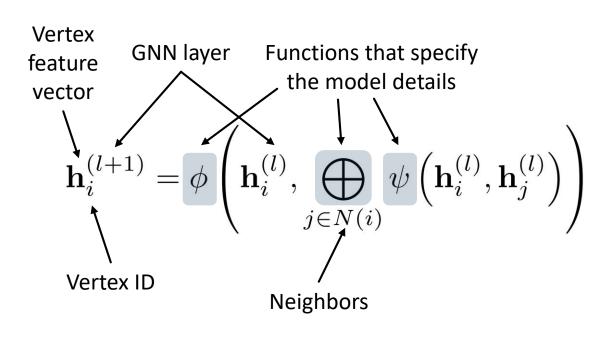
Formulations based on functions operating on single vertices & edges



Global GNN formulations

Local GNN formulations

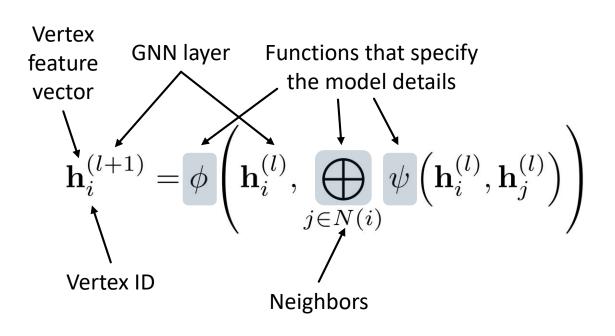
Formulations based on functions operating on single vertices & edges


Global GNN formulations

Local GNN formulations

Formulations based on functions operating on single vertices & edges

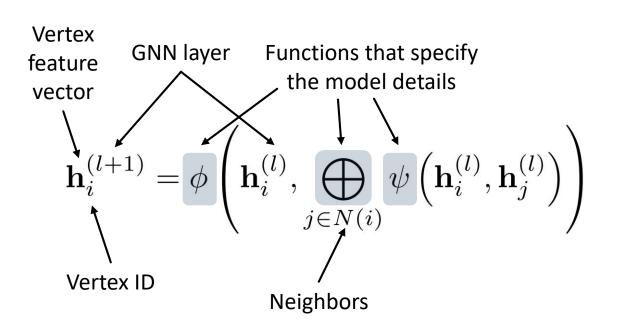
Global GNN formulations

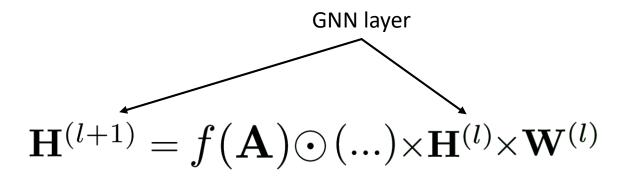


Local GNN formulations

Formulations based on functions operating on single vertices & edges

Global GNN formulations

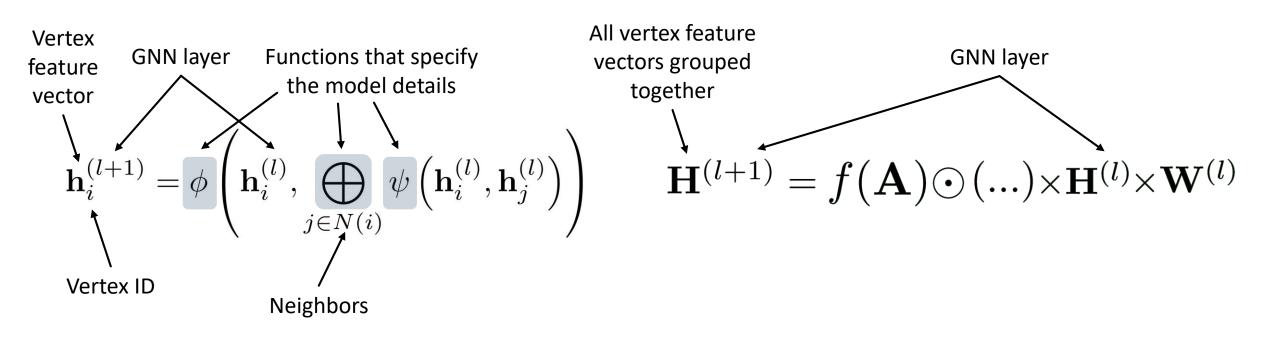

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$



Local GNN formulations

Formulations based on functions operating on single vertices & edges

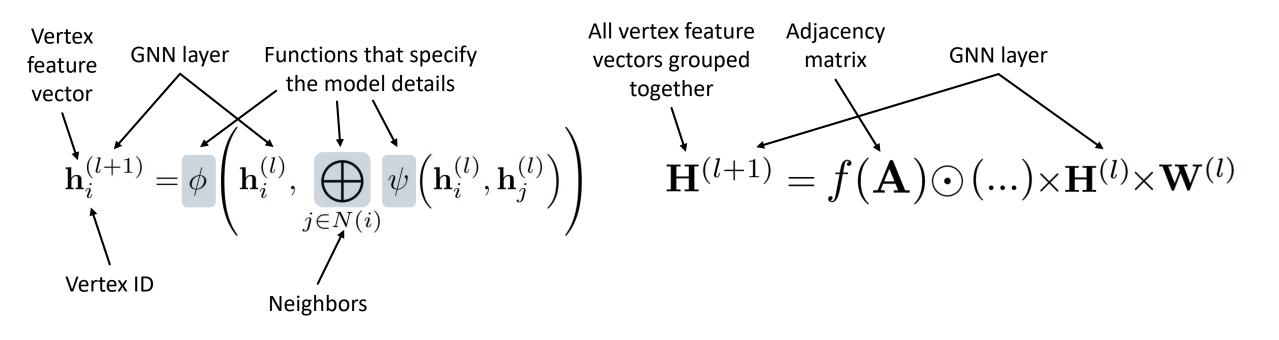
Global GNN formulations



Local GNN formulations

Formulations based on functions operating on single vertices & edges

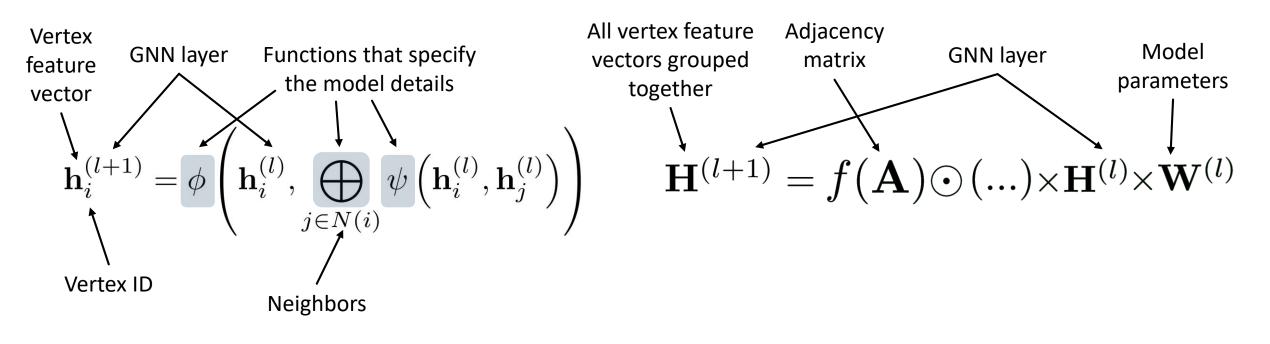
Global GNN formulations



Local GNN formulations

Formulations based on functions operating on single vertices & edges

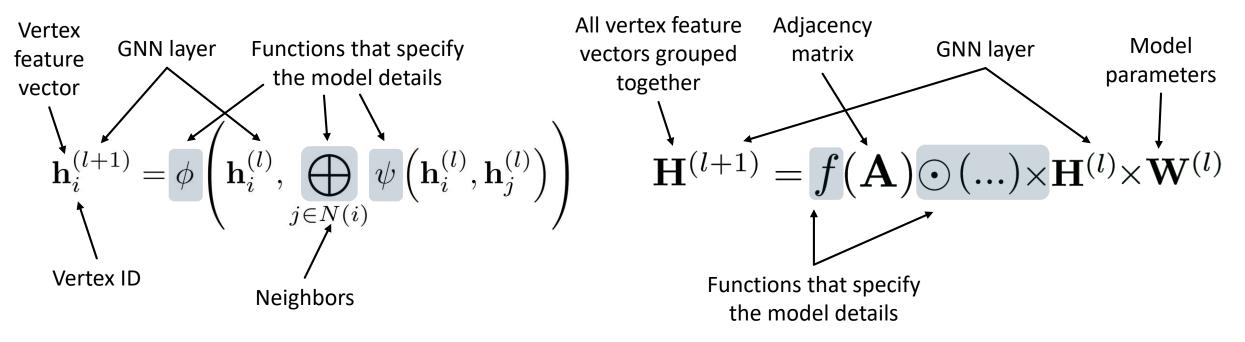
Global GNN formulations



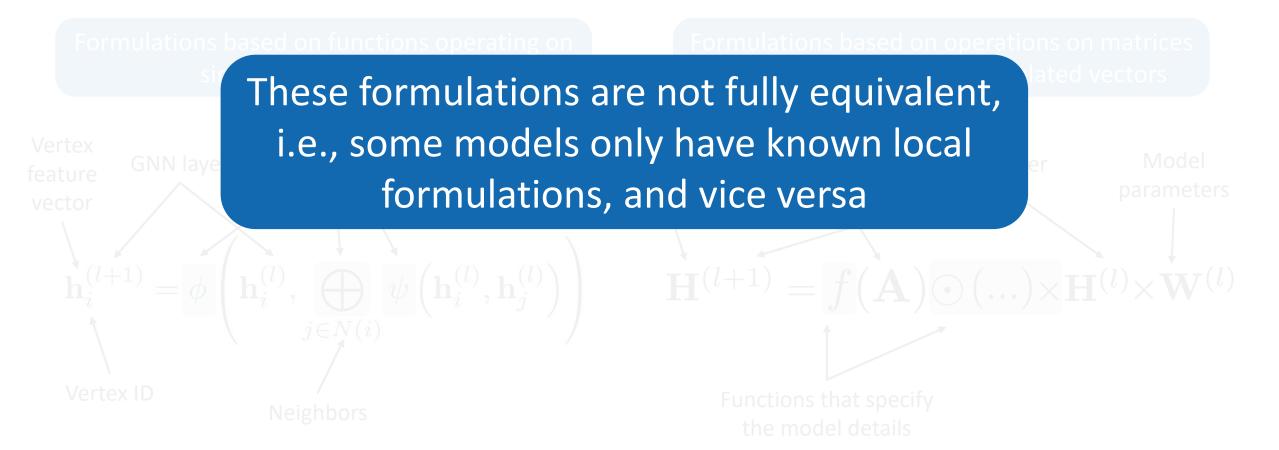
Local GNN formulations

Formulations based on functions operating on single vertices & edges

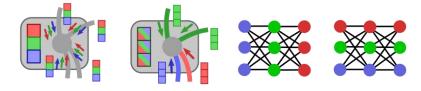
Global GNN formulations



Local GNN formulations

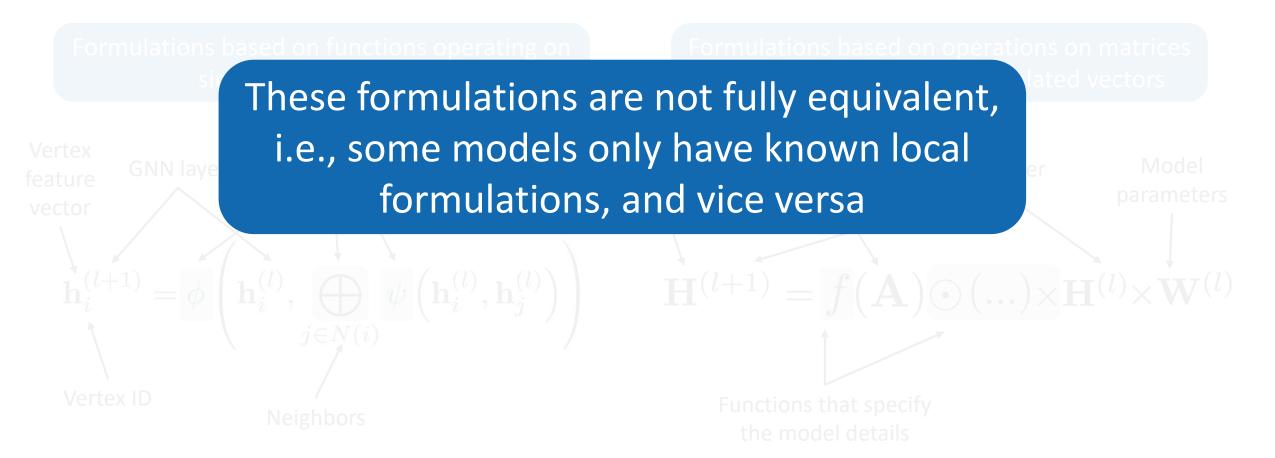

Formulations based on functions operating on single vertices & edges

Global GNN formulations


Local GNN formulations

Global GNN formulations

Mark and and and



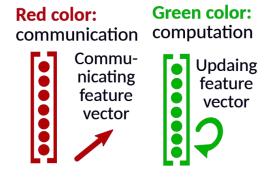
Local GNN formulations

Global GNN formulations

a la taman a series and

Local Formulations of GNN Models

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

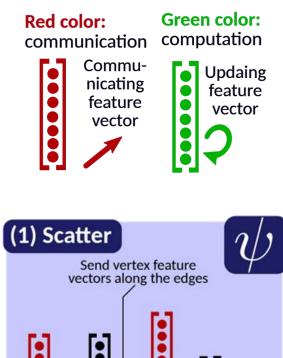

A CONTRACTOR OF THE OWNER

Local Formulations of GNN Models

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

A Transmission of the Party of the

ļ

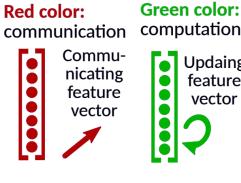


Local Formulations of GNN Models

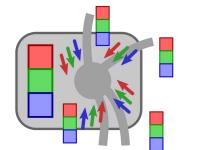
A CONTRACTOR

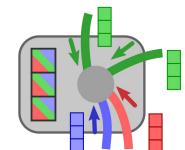
 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

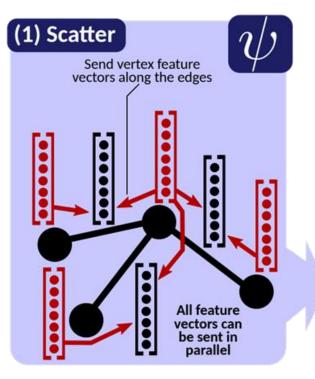
All feature vectors can be sent in parallel



Local Formulations of GNN Models


 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

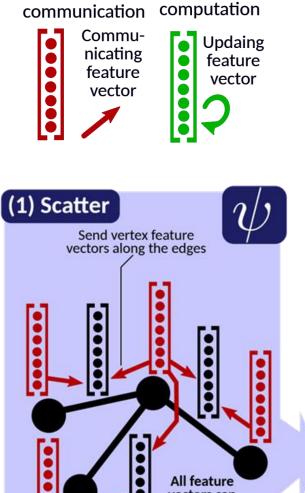


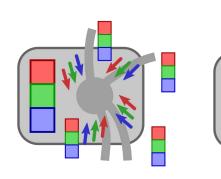

feature

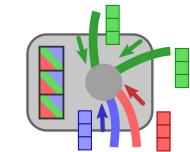
vector

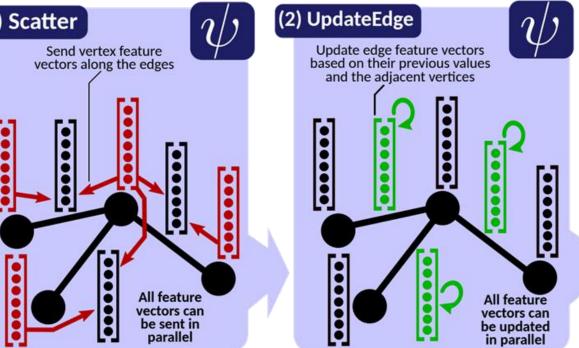
Providence -

Red color:




Local Formulations of GNN Models

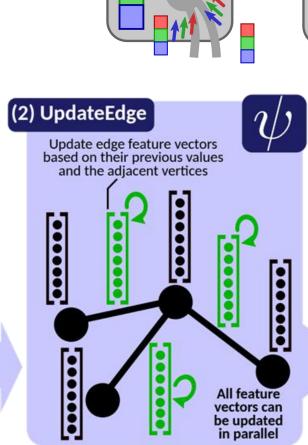

Green color:

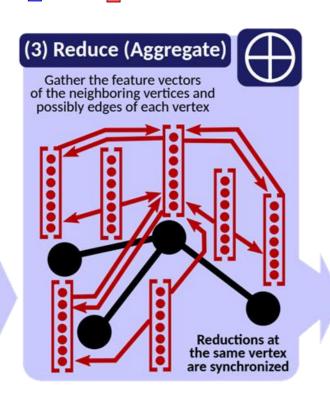


 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

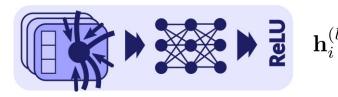
Red color:

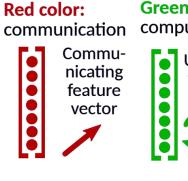

spcl.inf.ethz.ch


Local Formulations of GNN Models


Green color:

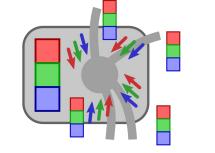
 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

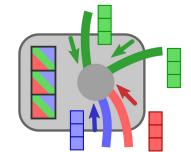


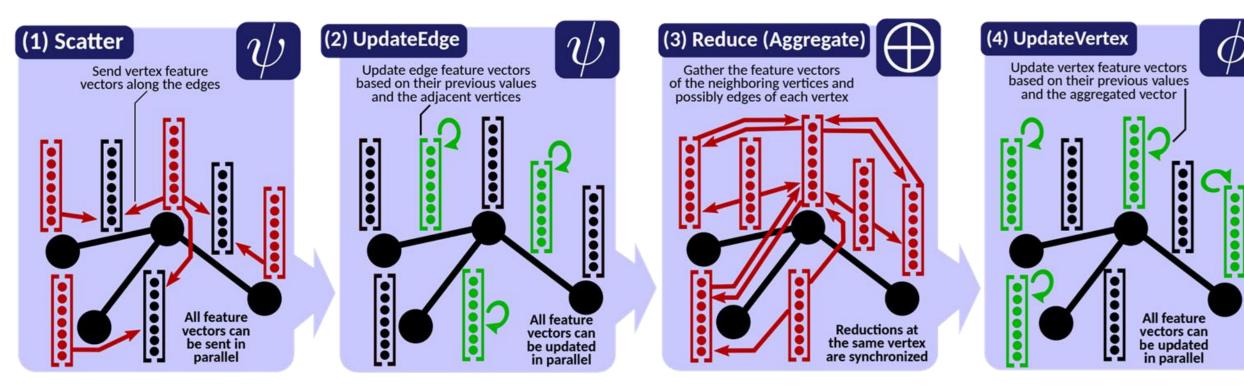

***SPCL

spcl.inf.ethz.ch

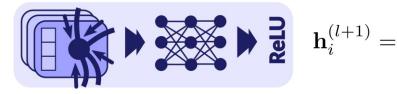
Local Formulations of GNN Models

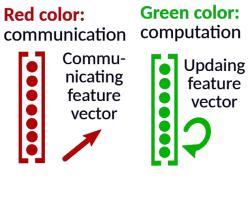


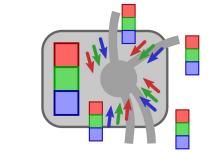

 $\mathbf{\hat{p}} \quad \mathbf{\hat{p}} \quad \mathbf{\hat{h}}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$

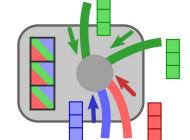


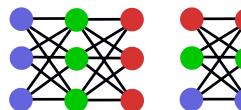
Green color: computation



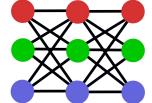

MASPEL

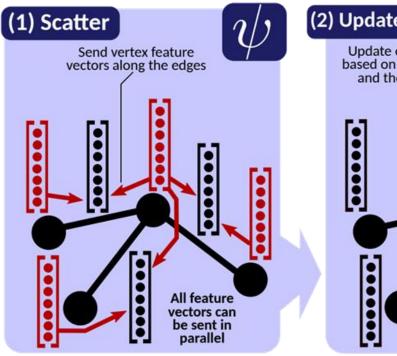

spcl.inf.ethz.ch EHzürich 🥣 @spcl_eth

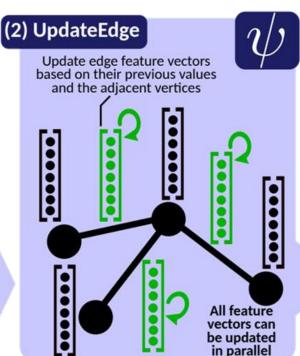

Local Formulations of GNN Models



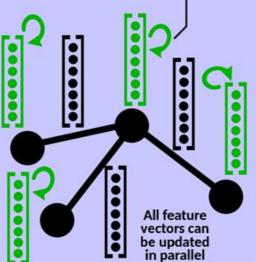
$$=\phi\left(\mathbf{h}_{i}^{\left(l
ight)},\bigoplus_{j\in N\left(i
ight)}\psi\left(\mathbf{h}_{i}^{\left(l
ight)},\mathbf{h}_{j}^{\left(l
ight)}
ight)
ight)$$







1


Gather the feature vectors of the neighboring vertices and possibly edges of each vertex

(4) UpdateVertex

Update vertex feature vectors based on their previous values and the aggregated vector

Parallel Analysis of $\,\psi\,$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

Reference			
GCN [128]			
GraphSAGE [101] (mean) GIN [226]			
CommNet [192]			
Vanilla attention [201]			
MoNet [158]			
GAT [202]			
Attention-based GNNs [196]			
G-GCN [47]			
GraphSAGE [101] (pooling) EdgeConv [216] "choice 1" EdgeConv [216] "choice 5"			

A START AND A START OF A START

***SPCL

spcl.inf.ethz.ch

Parallel Analysis of $\,\psi\,$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

Reference	Formulation for $\psi(\mathbf{h}_i,\mathbf{h}_j)$	
GCN [128]	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$	
GraphSAGE [101] (mean)	$\mathbf{v}^{a_i a_j}$ \mathbf{h}_j	
GIN [226]	\mathbf{h}_{j}	
CommNet [192]	\mathbf{h}_{j}	
Vanilla attention [201]	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight) \mathbf{h}_{j}$	
MoNet [158]	$\exp\left(-\frac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)\right)$	
GAT [202]	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$	
Attention-based GNNs [196]	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$	
G-GCN [47]	$\sigma \left(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{h}_j ight) \odot \mathbf{h}_j$	
GraphSAGE [101] (pooling)	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$	
EdgeConv [216] "choice 1"	$\mathbf{W}\mathbf{h}_{j}$	
EdgeConv [216] "choice 5"	$\sigma \left(\mathbf{W}_{1} \left(\mathbf{h}_{j} - \mathbf{h}_{i} ight) + \mathbf{W}_{2} \mathbf{h}_{i} ight)$	

Destant and the second

Parallel Analysis of $\,\psi\,$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$
GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$
GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_{j}
GIN [226]	C-GNN	\mathbf{h}_{j}
CommNet [192]	C-GNN	\mathbf{h}_{j}
Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight) \mathbf{h}_{j}$
MoNet [158]	A-GNN	$\exp\left(-rac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j} ight)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j} ight) ight)$
GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$
Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$
G-GCN [47]	MP-GNN	$\sigma \left(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{h}_j ight) \odot \mathbf{h}_j$
GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$
EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$
EdgeConv [216] "choice 5"	MP-GNN	$\sigma\left(\mathbf{W}_{1}\left(\mathbf{h}_{j}-\mathbf{h}_{i} ight)+\mathbf{W}_{2}\mathbf{h}_{i} ight)$

S. Marker & Street Barry

Parallel Analysis of $\,\psi\,$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

$\begin{array}{c} \mathbf{Output}\\ \mathbf{of} \ \psi \end{array}$	Reference	Class	Formulation for $\psi(\mathbf{h}_i,\mathbf{h}_j)$
	GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$
	GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_{j}
	GIN [226]	C-GNN	\mathbf{h}_{j}
(static)	CommNet [192]	C-GNN	\mathbf{h}_{j}
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight)\mathbf{h}_{j}$
	MoNet [158]	A-GNN	$\exp\left(-\frac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j} ight) ight)$
	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)}\mathbf{h}_{j}$
	Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$
	G-GCN [47]	MP-GNN	$\sigma\left(\mathbf{W}_{1}\mathbf{h}_{i}+\mathbf{W}_{2}\mathbf{h}_{j} ight)\odot\mathbf{h}_{j}$
	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma \left(\mathbf{W}_{1} \left(\mathbf{h}_{j} - \mathbf{h}_{i} ight) + \mathbf{W}_{2} \mathbf{h}_{i} ight)$

The local sectors and

***SPCL

spcl.inf.ethz.ch

Parallel Analysis of $\,\psi\,$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

$\begin{array}{c} \mathbf{Output}\\ \mathbf{of} \ \psi \end{array}$	Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$
	GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$
	GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_j
	GIN [226]	C-GNN	\mathbf{h}_{j}
(static)	CommNet [192]	C-GNN	\mathbf{h}_{j}
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight)\mathbf{h}_{j}$
	MoNet [158]	A-GNN	$\exp\left(-rac{1}{2}\left(\mathbf{h}_j-\mathbf{w}_j ight)^T\mathbf{W}_j^{-1}\left(\mathbf{h}_j-\mathbf{w}_j ight) ight)$
(learnt)	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$
(icarint)	Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$
	G-GCN [47]	MP-GNN	$\sigma \left(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{h}_j ight) \odot \mathbf{h}_j$
	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma\left(\mathbf{W}_{1}\left(\mathbf{h}_{j}-\mathbf{h}_{i} ight)+\mathbf{W}_{2}\mathbf{h}_{i} ight)$

Station and the second

Parallel Analysis of $\,\psi\,$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$
	GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$
	(mean)	C-GNN	\mathbf{h}_{j}
	GIN [226]	C-GNN	\mathbf{h}_{j}
(static)	CommNet [192]	C-GNN	\mathbf{h}_{j}
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight)\mathbf{h}_{j}$
	MoNet [158]	A-GNN	$\exp\left(-rac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j} ight)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j} ight) ight)$
	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$
(learnt)	Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$
	G-GCN [47]	MP-GNN	$\sigma \left(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{h}_j ight) \odot \mathbf{h}_j$
	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma\left(\mathbf{W}_{1}\left(\mathbf{h}_{j}-\mathbf{h}_{i}\right)+\mathbf{W}_{2}\mathbf{h}_{i}\right)$

Station and the second

Parallel Analysis of $\,\psi\,$

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$
	GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$	
	GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_{j}	
	GIN [226]	C-GNN	\mathbf{h}_{j}	
(static)	CommNet [192]	C-GNN	\mathbf{h}_{j}	
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight) \mathbf{h}_{j}$	
	MoNet [158]	A-GNN	$\exp\left(-\frac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)\right)$	$\exp\left(\mathbf{E} \cdot \mathbf{I} \times \mathbf{E} \right)$
(learnt)	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)}\mathbf{h}_{j}$	$\frac{\exp\left(\mathbf{G}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{H}\right]\times\mathbf{H}\right]}{\sum\exp\left(\mathbf{G}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{H}\right]\times\mathbf{H}\right]\mathbf{H}\times\mathbf{H}\right]}\cdot\mathbf{H}$
(1001110)	Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$	
	G-GCN [47]	MP-GNN	$\sigma\left(\mathbf{W}_{1}\mathbf{h}_{i}+\mathbf{W}_{2}\mathbf{h}_{j} ight)\odot\mathbf{h}_{j}$	$\left(\left[::::] \times [:] \right) \odot [:] \right)$
	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$	
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$	
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma\left(\mathbf{W}_{1}\left(\mathbf{h}_{j}-\mathbf{h}_{i}\right)+\mathbf{W}_{2}\mathbf{h}_{i}\right)$	

all of the second second second

Parallel Analysis of $\,\psi\,$

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i,\mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$
	GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$	
	GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_{j}	
	GIN [226]	C-GNN	\mathbf{h}_{j}	
(static)	CommNet [192]	C-GNN	\mathbf{h}_{j}	
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight)\mathbf{h}_{j}$	
	MoNet [158]	A-GNN	$\exp\left(-\frac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right) ight)$	$\exp\left(\mathbf{c} \cdot \mathbf{J} \times [\mathbf{i}] \times [\mathbf{i}] \right)$
(learnt)	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$	$\frac{\exp\left(\mathbf{C}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j};\mathbf{j}\right]\right)}{\sum\exp\left(\mathbf{C}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j};\mathbf{j}\right]\right)\left[\mathbf{j};\mathbf{j}]\times\mathbf{j};\mathbf{j}\right]\right)}\cdot\mathbf{j}$
(1001110)	Attention-based GNNs [196]	A-GNN	$w rac{\mathbf{h}_i^T \cdot \mathbf{h}_j}{\ \mathbf{h}_i\ \ \mathbf{h}_j\ } \mathbf{h}_j$	
	G-GCN [47]	MP-GNN	$\sigma\left(\mathbf{W}_{1}\mathbf{h}_{i}+\mathbf{W}_{2}\mathbf{h}_{j} ight)\odot\mathbf{h}_{j}$	
	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w}\right)$	
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$	₩ × 1 #features
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma\left(\mathbf{W}_{1}\left(\mathbf{h}_{j}-\mathbf{h}_{i}\right)+\mathbf{W}_{2}\mathbf{h}_{i}\right)$	

All the state of the

Parallel Analysis of $\,\psi\,$

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

$\begin{array}{c} \mathbf{Output} \\ \mathbf{of} \ \psi \end{array}$	Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$		depth of one n of $\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$
	GCN [128]	C-GNN	$rac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$		O(k)	<i>O</i> (1)
	GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_{j}	[8]	O(1)	O(1)
	GIN [226]	C-GNN	\mathbf{h}_{j}		O(1)	O(1)
(static)	CommNet [192]	C-GNN	\mathbf{h}_{j}		O(1)	O(1)
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight) \mathbf{h}_{j}$	(E	$O\left(k ight)$	$O(\log k)$
	MoNet [158]	A-GNN	$\exp\left(-\frac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)\right)$	$\exp\left(\mathbf{c} \cdot \mathbf{J} \times \mathbf{H} \times \mathbf{H} \right)$	$O\left(k^2\right)$	$O(\log k)$
(learnt)	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$	$\frac{\exp\left(0\cdot\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j};\mathbf{j}\right]\right)}{\sum\exp\left(0\cdot\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j};\mathbf{j}\right]\right)}\cdot\mathbf{j}$	$O\left(dk^2\right)$	$O\left(\log k + \log d\right)$
()	Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \left\ \mathbf{h}_{j} ight\ }\mathbf{h}_{j}$		O(k)	$O(\log k)$
	G-GCN [47]	MP-GNN	$\sigma \left(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{h}_j ight) \odot \mathbf{h}_j$		$O(k^2)$	$O(\log k)$
	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$		$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$	#features	$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma\left(\mathbf{W}_{1}\left(\mathbf{h}_{j}-\mathbf{h}_{i}\right)+\mathbf{W}_{2}\mathbf{h}_{i}\right)$		$O(k^2)$	$O(\log k)$

all and a state of the

 $\underset{\mathbf{of}}{\mathbf{Output}}$

(learnt)

Para	allel Analy	sis of	$\psi^{n: \# \text{vertices in a graph}}_{L: \# \text{layers in a GNN}}_{d: \text{maximum degree}}$	n <i>m</i> : #edges in a graph <i>k</i> : #features $\mathbf{h}_i^{(l+1)} =$	$\phi\left(\mathbf{h}_{i}^{\left(l ight)} ight)$	$, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} ight) ight)$
Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i,\mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$		depth of one n of $\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$
	GCN [128]	C-GNN	$\frac{1}{\sqrt{d_i d_j}} \mathbf{h}_j$	work: total #operations	O(k)	<i>O</i> (1)
(static)	GraphSAGE [101] (mean)	C-GNN	\mathbf{h}_{j}	depth : longest chain of	O(1)	O(1)
	GIN [226]	C-GNN	\mathbf{h}_{j}	sequential dependencies	O(1)	O(1)
	CommNet [192]	C-GNN	\mathbf{h}_{j}	[1]	O(1)	O(1)
	Vanilla attention [201]	A-GNN	$\left(\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j} ight) \mathbf{h}_{j}$	(E3 · [2]) · [2]	$O\left(k ight)$	$O(\log k)$
	MoNet [158]	A-GNN	$\exp\left(-\frac{1}{2}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right)^{T}\mathbf{W}_{j}^{-1}\left(\mathbf{h}_{j}-\mathbf{w}_{j}\right) ight)$	$\exp\left(\mathbf{c}\cdot\mathbf{J}\times\mathbf{i}\times\mathbf{i}\times\mathbf{i}\right)$	$O\left(k^2\right)$	$O(\log k)$
	GAT [202]	A-GNN	$\frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \ \mathbf{W}\mathbf{h}_{y}\right]\right)\right)}\mathbf{h}_{j}$	$\frac{\exp\left(\mathbf{C}\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j}\right]\right)}{\sum\exp\left(\mathbf{C}\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j}\right]\right)\left[\mathbf{j};\mathbf{j}\times\mathbf{j}]\right]}\cdot\mathbf{j}$	$O\left(dk^2 ight)$	$O\left(\log k + \log d\right)$
(learnt)	Attention-based GNNs [196]	A-GNN	$wrac{\mathbf{h}_{i}^{T}\cdot\mathbf{h}_{j}}{\ \mathbf{h}_{i}\ \ \mathbf{h}_{j}\ }\mathbf{h}_{j}$		O(k)	$O(\log k)$
	G-GCN [47]	MP-GNN	$\sigma\left(\mathbf{W}_{1}\mathbf{h}_{i}+\mathbf{W}_{2}\mathbf{h}_{j} ight)\odot\mathbf{h}_{j}$		$O(k^2)$	$O(\log k)$
6	GraphSAGE [101] (pooling)	MP-GNN	$\sigma\left(\mathbf{W}\mathbf{h}_{j}+\mathbf{w} ight)$		$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 1"	MP-GNN	$\mathbf{W}\mathbf{h}_{j}$	₩ × [] #features	$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 5"	MP-GNN	$\sigma \left(\mathbf{W}_{1} \left(\mathbf{h}_{j} - \mathbf{h}_{i} \right) + \mathbf{W}_{2} \mathbf{h}_{i} \right)$		$O(k^2)$	$O(\log k)$ 45

Const Adving Participation and and

45

spcl.inf.ethz.ch Ƴ@spcl_eth ■HZÜՐİCh

Par	allel Analy	sis of	ψ <i>n</i> : #vertices in a grap <i>L</i> : #layers in a GNN <i>d</i> : maximum degree		$=\phi\left(\mathbf{h}_{i}^{\left(l\right)}\right)$	$\psi\left(\mathbf{h}_{i}^{(l)},\mathbf{h}_{j}^{(l)} ight)$
Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i,\mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$		depth of one n of $\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$
	GCN [128]	C-GNN	C-GNNs almost always take	$c \cdot [i]$ work: total #operations	O(k)	O(1)
-	GraphSAGE [101] (mean)	C-GNN	O(1) depth and $O(1)$ work	depth: longest chain of	O(1)	O(1)
(static)	GIN [226]	C-GNN		sequential dependencies	O(1)	O(1)
	CommNet [192]	C-GNN			O(1)	O(1)
	Vanilla attention [201]	A-GNN		([] · []) · []	$O\left(k ight)$	$O(\log k)$
	MoNet [158]	A-GNN		$\exp\left(\mathbf{E} \cdot \mathbf{I} \times \mathbf{E} \right)$	$O\left(k^2\right)$	$O(\log k)$
(learnt)	GAT [202]	A-GNN		$\frac{\exp\left(\mathbf{G}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{G}\cdot\mathbf{J}\times\mathbf{H}\right]\times\mathbf{H}\right)}{\sum\exp\left(\mathbf{G}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{G}\cdot\mathbf{H}\times\mathbf{H}\right]\times\mathbf{H}\right]\times\mathbf{H}\left[\mathbf{G}\cdot\mathbf{H}\times\mathbf{H}\right]\right)}\cdot\mathbf{H}$	$O\left(dk^2 ight)$	$O\left(\log k + \log d\right)$
(icui iic)	Attention-based GNNs [196]	A-GNN			O(k)	$O(\log k)$
	G-GCN [47]	MP-GNN		$\left(\left[::::] \times [:] ight) \odot [:]$	$O(k^2)$	$O(\log k)$
	GraphSAGE [101] (pooling)	MP-GNN		[:::] × [:]	$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 1"	MP-GNN		₩ × 1 #features	$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 5"	MP-GNN			$O(k^2)$	$O(\log k)$

COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COL

45

spcl.inf.ethz.ch

Par	allel Analy	sis of	$\psi^{n: \# \text{vertices in a grap}}_{L: \# \text{layers in a GNN}}_{d: \text{maximum degree}}$	bh <i>m</i> : #edges in a graph <i>k</i> : #features $\mathbf{h}_i^{(l+1)} =$	$=\phi\left(\mathbf{h}_{i}^{\left(l ight)} ight)$	$\psi\left(\mathbf{h}_{i}^{(l)},\mathbf{h}_{j}^{(l)},\mathbf{h}_{j}^{(l)} ight)$)))
Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_{i},\mathbf{h}_{j})$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$		depth of one n of $\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$	
	GCN [128]	C-GNN	C-GNNs almost always take	$c \cdot $ work: total #operations	O(k)	O(1)	
-	GraphSAGE [101] (mean)	C-GNN	O(1) depth and $O(1)$ work	depth: longest chain of	O(1)	O(1)	
(static)	GIN [226]	C-GNN		sequential dependencies	O(1)	O(1)	
	CommNet [192]	C-GNN	A-GNNs and MP-GNNs	[1]	O(1)	O(1)	
	Vanilla attention [201]	A-GNN	have much more complex formulations	(E] · []) · []	$O\left(k ight)$	$O(\log k)$	
	MoNet [158]	A-GNN	Nearly all A CNNc and MD	$\exp\left(\mathbf{F}\cdot\mathbf{J}\times\mathbf{H}\times\mathbf{H}\times\mathbf{H}\right)$	$O\left(k^2 ight)$	$O(\log k)$	
(learnt)	GAT [202]	A-GNN	Nearly all A-GNNs and MP- GNNs have $O(k^2)$ work and $O(log k)$ depth	$\frac{\exp\left(\mathbf{F}\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j}\right]\right)}{\sum\exp\left(\mathbf{F}\cdot\mathbf{J}\cdot\left[\mathbf{j};\mathbf{j}]\times\mathbf{j}\right]\right)\times\mathbf{j}\left[\mathbf{j};\mathbf{j}]\times\mathbf{j}\right]\right)}\cdot\mathbf{j}$	$O\left(dk^2 ight)$	$O\left(\log k + \log d\right)$	
()	Attention-based GNNs [196]	A-GNN			O(k)	$O(\log k)$	
	G-GCN [47]	MP-GNN			$O(k^2)$	$O(\log k)$	
	GraphSAGE [101] (pooling)	MP-GNN		(iii) × (i)	$O(k^2)$	$O(\log k)$	
ě	EdgeConv [216] "choice 1"	MP-GNN		₩ × 11 H + features	$O(k^2)$	$O(\log k)$	
	EdgeConv [216] "choice 5"	MP-GNN			$O(k^2)$	$O(\log k)$	45

COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COLOR DE COL

spcl.inf.ethz.ch

Par	Parallel Analysis of ψ i: #vertices in a graph L: #layers in a GNN $d:$ maximum degree $i:$ #features $i:$ #features $h_i^{(l+1)} = \phi \left(\mathbf{h}_i^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_i^{(l)}, \mathbf{h}_j^{(l)} \right) \right)$						
Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$		depth of one n of $\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$	
	GCN [128]	C-GNN	C-GNNs almost always take	$c \cdot \mathbf{i}$ work: total #operations	O(k)	O(1)	
	GraphSAGE [101] (mean)	C-GNN	O(1) depth and $O(1)$ work	depth : longest chain of	O(1)	O(1)	
(static)	GIN [226]	C-GNN		sequential dependencies	O(1)	O(1)	
	CommNet [192]	C-GNN	A-GNNs and MP-GNNs	[3]	O(1)	O(1)	
	Vanilla attention [201]	A-GNN	have much more complex formulations	(E-1 · []) · []	$O\left(k ight)$	$O(\log k)$	
	MoNet [158]	A-GNN	Nearly all A-GNNs and MP-	$\exp\left(\mathbf{c} \cdot \mathbf{j} \times \mathbf{b} \times \mathbf{c} \right)$	$O\left(k^2 ight)$	$O(\log k)$	
(learnt)	GAT [202]	A-GNN	GNNs have $O(k^2)$ work and $O(\log k)$ depth	$\frac{\exp\left(\begin{bmatrix}\mathbf{G}\cdot\mathbf{J}\cdot\begin{bmatrix}\mathbf{i}\\\mathbf{j}\\\mathbf{k}\end{bmatrix}\times\mathbf{j}\\\mathbf{k}\end{bmatrix}\right)}{\sum\exp\left(\begin{bmatrix}\mathbf{G}\cdot\mathbf{J}\cdot\begin{bmatrix}\mathbf{i}\\\mathbf{j}\\\mathbf{k}\end{bmatrix}\times\mathbf{j}\\\mathbf{k}\end{bmatrix}\right)\left[\mathbf{j}\\\mathbf{k}\\\mathbf{k}\\\mathbf{k}\end{bmatrix}\right]\left[\mathbf{j}\\\mathbf{k}\\\mathbf{k}\\\mathbf{k}\\\mathbf{k}\end{bmatrix}\right]}\cdot\mathbf{j}$	$O\left(dk^2\right)$	$O\left(\log k + \log d\right)$	
(1001110)	Attention-based GNNs [196]	A-GNN	Most computationally intense model, has also		O(k)	$O(\log k)$	
	G-GCN [47]	MP-GNN	logarithmic depth		$O(k^2)$	$O(\log k)$	
[-]	GraphSAGE [101] (pooling)	MP-GNN		[iii] × [i]	$O(k^2)$	$O(\log k)$	
	EdgeConv [216] "choice 1"	MP-GNN		₩ × 🗑 📕 📕 #features	$O(k^2)$	$O(\log k)$	
	EdgeConv [216] "choice 5"	MP-GNN			$O(k^2)$	$O(\log k)$	

Contraction of the second s

45

spcl.inf.ethz.ch

Parallel Analysis of		/sis of	ψ <i>n</i> : #vertices in a grap <i>L</i> : #layers in a GNN <i>d</i> : maximum degree	k: #features $\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{i}^{(l)} \right)$		$\psi\left(\mathbf{h}_{i}^{(l)},\mathbf{h}_{j}^{(l)} ight)$
Output of ψ	Reference	Class	Formulation for $\psi(\mathbf{h}_i, \mathbf{h}_j)$	Dimensions & density of one execution of $\psi(\mathbf{h}_i, \mathbf{h}_j)$		depth of one n of $\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$
	GCN [128]	C-GNN	C-GNNs almost always take	$c \cdot \mathbf{i}$ work: total #operations	O(k)	O(1)
	GraphSAGE [101] (mean)	C-GNN	O(1) depth and $O(1)$ work	depth : longest chain of	O(1)	O(1)
	GIN [226]	C-GNN		sequential dependencies	O(1)	O(1)
(static)	CommNet [192]	C-GNN	A-GNNs and MP-GNNs	[]	O(1)	O(1)
	Vanilla attention [201]	A-GNN	have much more complex formulations	(6-9 · [3]) · [3]	$O\left(k ight)$	$O(\log k)$
	MoNet [158]	A-GNN	Nearly all A-GNNs and MP-	$\exp\left(\mathbf{c} \cdot \mathbf{j} \times \mathbf{i} \mathbf{j} \times \mathbf{i} \right)$	$O\left(k^2\right)$	$O(\log k)$
(learnt)	GAT [202]	A-GNN	GNNs have $O(k^2)$ work and $O(\log k)$ depth	$\frac{\exp\left(\mathbf{C}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{i};\mathbf{j}]\times\mathbf{i};\mathbf{j}\right]\right)}{\sum\exp\left(\mathbf{C}\cdot\cdot\mathbf{J}\cdot\left[\mathbf{i};\mathbf{j}]\times\mathbf{i};\mathbf{j}\right]\right)}\cdot\mathbf{i}$	$O\left(dk^2\right)$	$O\left(\log k + \log d\right)$
(1001110)	Attention-based GNNs [196]	A-GNN	Most computationally	(E	O(k)	$O(\log k)$
	G-GCN [47]	MP-GNN	intense model, has also logarithmic depth		$O(k^2)$	$O(\log k)$
[•]	GraphSAGE [101] (pooling)	MP-GNN	Most models use GEMV;	[:::] × [:]	$O(k^2)$	$O(\log k)$
:	EdgeConv [216] "choice 1"	MP-GNN	matrices and vectors are		$O(k^2)$	$O(\log k)$
	EdgeConv [216] "choice 5"	MP-GNN	dense		$O(k^2)$	$O(\log k)$

CALL STREET, ST

n: #vertices in a graphm: #edges in a graphL: #layers in a GNNk: #featuresd: maximum degree

All the second second

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Reference	Class			
GCN [128]	C-GNN			
GraphSAGE [101 (mean)	C-GNN			
GIN [226]	C-GNN			
CommNet [192]	C-GNN			
Vanilla attention [201]	A-GNN			
GAT [202]	A-GNN			
Attention-based GNNs [196]	A-GNN			
MoNet [158]	A-GNN			
G-GCN [47]	MP-GNN			
GraphSAGE [101 (pooling)	MP-GNN			
EdgeConv [216] "choice 1"	MP-GNN			
EdgeConv [216] "choice 5"	MP-GNN			

spcl.inf.ethz.ch

Ρ	arallel An	alysis	of ϕ	<i>n</i> : #vertices in a <i>L</i> : #layers in a C <i>d</i> : maximum de	GNN	<i>m</i> : #edges in a graph <i>k</i> : #features	$\mathbf{h}_{i}^{(l+1)} = \phi$	$\left(\mathbf{h}_{i}^{\left(l ight)}, igoplus_{j\in N\left(i ight)} ight)$	$\psi\left(\mathbf{h}_{i}^{\left(l\right)},\mathbf{h}_{j}^{\left(l\right)} ight)$
	Reference	Class	Formulation of $\psi(\mathbf{h}_i, \mathbf{h}_j)$ are st	l l					
	GCN [128] GraphSAGE [101] (mean)		$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \mathbf{W} \times \left(\frac{1}{d_i} \cdot \left(\sum_{j \in \widehat{M}(i)} \frac{1}{d_j} \right) \right) \right)$						
	GIN [226]	C-GNN	$\mathrm{MLP}\left((1+\epsilon)\mathbf{h}_i\right)$	$+\sum_{j\in N(i)}\psi(\mathbf{h}_j)\Big)$					
	CommNet [192]	C-GNN	$\mathbf{W}_1\mathbf{h}_i + \mathbf{W}_2 imes$	$\left(\sum_{j\in N^+(i)}\psi(\mathbf{h}_j)\right)$					
	Vanilla attention [201]	A-GNN	$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \right)$	$\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$					
	GAT [202]	A-GNN	$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \right)$	$\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$					
	Attention-based GNNs [196]		$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \right)$	/					
	MoNet [158]	A-GNN	$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \right)$	$\psi\left(\mathbf{h}_{j} ight)$					
	G-GCN [47]	MP-GNN	$\mathbf{W} \times \left(\sum_{i \in N^+} \left(\sum_{i \in N^+} \right) \right)$	$_{i)}\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$					
	GraphSAGE [101] (pooling)	MP-GNN	$\left(\mathbf{W} \times \left(\mathbf{h}_{i} \right) \right) $ (m)	$\operatorname{ax}_{j\in N(i)}\psi\left(\mathbf{h}_{i},\mathbf{h}_{j}\right)\right)$))				
	EdgeConv [216] "choice 1"	MP-GNN	$\sum_{j \in N^+(i)} \psi(\mathbf{h}_j)$	_i)					
	EdgeConv [216] "choice 5"	MP-GNN	$\max_{j\in N^+(i)}\psi($	$\mathbf{h}_i,\mathbf{h}_j)$					2

Carl State of the second s

n: #vertices in a graphm: #edL: #layers in a GNNk: #fead: maximum degree

m: #edges in a graph *k*: #features

Sector Sector

$$= \phi \left(\mathbf{h}_i^{(l)}, \bigoplus_{j \in N(i)} \psi \right)$$

1

 $\mathbf{h}_{i}^{(l+1)}$

$$igoplus_{I(i)}\psi\left(\mathbf{h}_{i}^{(l)},\mathbf{h}_{j}^{(l)}
ight)$$

4 <u>4</u>			
Reference	Class	Formulation of ϕ for $\mathbf{h}_{i}^{(l)}$; $\psi(\mathbf{h}_{i}, \mathbf{h}_{j})$ are stated in Table 5	Dimensions & density of computing $\phi(\cdot)$, excluding $\psi(\cdot)$
GCN [128]	C-GNN	$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \psi(\mathbf{h}_j) \right)$	
GraphSAGE [101] (mean)	C-GNN	$\mathbf{W} \times \left(\frac{1}{d_i} \cdot \left(\sum_{j \in \widehat{N}(i)} \psi(\mathbf{h}_j)\right)\right)$	$\begin{array}{c} \blacksquare \\ K \\ \hline \\ K \\ \hline \\ \\ K \\ \hline \\ \\ \\ \\ \\ \\ \\$
GIN [226]	C-GNN	$\mathrm{MLP}\left((1+\epsilon)\mathbf{h}_{i}+\sum_{j\in N(i)}\psi\left(\mathbf{h}_{j}\right)\right)$	$\overbrace{\blacksquare}^{\text{A times}} \times \ldots \times \overbrace{\blacksquare}^{\text{II}} \times \sum [\blacksquare]$
CommNet [192]	C-GNN	$\mathbf{W}_{1}\mathbf{h}_{i} + \mathbf{W}_{2} \times \left(\sum_{j \in N^{+}(i)} \psi(\mathbf{h}_{j})\right)$	1
Vanilla attention [201]		$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \psi \left(\mathbf{h}_{i}, \mathbf{h}_{j} \right) \right)$	
GAT [202]	A-GNN	$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \psi(\mathbf{h}_i, \mathbf{h}_j) \right)$	$\times \Sigma$:
Attention-based GNNs [196]		$\mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \psi \left(\mathbf{h}_{i}, \mathbf{h}_{j} \right) \right)$	
MoNet [158]	A-GNN	$\mathbf{W} imes \left(\sum_{j \in \widehat{N}(i)} \psi(\mathbf{h}_j) \right)$	$111 \times \sum 12$
G-GCN [47]	MP-GNN	$\mathbf{W} \times \left(\sum_{i \in N^+(i)} \psi(\mathbf{h}_i, \mathbf{h}_j) \right)$	1
GraphSAGE [101] (pooling)		$\left(\mathbf{W} \times \left(\mathbf{h}_{i} \ \left(\max_{j \in N(i)} \psi \left(\mathbf{h}_{i}, \mathbf{h}_{j} \right) \right) \right) \right)$	$[\texttt{H}] \times \left(\texttt{H} \mid (\texttt{H} \times \Sigma \texttt{H}) \right)$
EdgeConv [216] "choice 1"	MP-GNN	$\sum_{j\in N^{+}(i)}\psi\left(\mathbf{h}_{j} ight)$	\sum
EdgeConv [216] "choice 5"	MP-GNN	$\max_{j\in N^{+}(i)}\psi\left(\mathbf{h}_{i},\mathbf{h}_{j}\right)$	\sum

n: #vertices in a graph *L*: #layers in a GNN *d*: maximum degree

m: #edges in a graph *k*: #features

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Reference	Class	Formulation of ϕ for $\mathbf{h}_{i}^{(l)}$; $\psi(\mathbf{h}_{i}, \mathbf{h}_{j})$ are stated in Table 5	Dimensions & density of computing $\phi(\cdot)$, excluding $\psi(\cdot)$		hole training iteration ing ψ from Table 5)
GCN [128]		$\mathbf{W} imes \left(\sum_{j \in \widehat{N}(i)} \psi\left(\mathbf{h}_{j} ight) ight)$		$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GraphSAGE [101] (mean)] _{C-GNN}	$\mathbf{W} \times \left(\frac{1}{d_i} \cdot \left(\sum_{j \in \widehat{N}(i)} \psi\left(\mathbf{h}_j\right)\right)\right)$	\therefore \times \sum \therefore	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
			Ktimes		
GIN [226]	C-GNN	$\mathrm{MLP}\left((1+\epsilon)\mathbf{h}_{i}+\sum_{j\in N(i)}\psi\left(\mathbf{h}_{j}\right)\right)$	$ \times \dots \times \times \sum $	$O(Lmk+LKnk^2)$	$O(L\log d + LK\log k)$
CommNet [192]	C-GNN	$\mathbf{W}_{1}\mathbf{h}_{i} + \mathbf{W}_{2} \times \left(\sum_{j \in N^{+}(i)} \psi(\mathbf{h}_{j})\right)$::: $\times \sum$:	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
Vanilla attention [201]		$\mathbf{W} imes \left(\sum_{j \in \widehat{N}(i)} \psi\left(\mathbf{h}_{i}, \mathbf{h}_{j} ight) ight)$	1	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GAT [202]	A-GNN	$\mathbf{W} imes \left(\sum_{j \in \widehat{N}(i)} \psi\left(\mathbf{h}_{i}, \mathbf{h}_{j} ight) ight)$:::: $\times \sum$::	$O(Lmdk^2 + Lnk^2)$	$O(L\log d + L\log k)$
Attention-based GNNs [196]		$\mathbf{W} imes \left(\sum_{j \in \widehat{N}(i)} \psi\left(\mathbf{h}_{i}, \mathbf{h}_{j} ight) ight)$		$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
MoNet [158]	A-GNN	$\mathbf{W} imes \left(\sum_{j \in \widehat{N}(i)} \psi\left(\mathbf{h}_{j} ight) ight)$	$[:::] \times \sum [:]$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
G-GCN [47]		$\mathbf{W} \times \left(\sum_{j \in N^+(i)} \psi(\mathbf{h}_i, \mathbf{h}_j) \right)$	\therefore \times \sum	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
GraphSAGE [101] (pooling)	1	$\left(\mathbf{W} \times \left(\mathbf{h}_{i} \right\ \left(\max_{j \in N(i)} \psi \left(\mathbf{h}_{i}, \mathbf{h}_{j} \right) \right) \right) \right)$	$[\texttt{iii}] \times \left(\texttt{ii} \parallel \left(\texttt{iii}] \times \Sigma \texttt{ii}\right)\right)$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
EdgeConv [216] "choice 1"	MP-GNN	$\sum_{j\in N^{+}(i)}\psi\left(\mathbf{h}_{j} ight)$	\sum	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
EdgeConv [216] "choice 5"	MP-GNN	$\max_{j\in N^{+}(i)}\psi\left(\mathbf{h}_{i},\mathbf{h}_{j} ight)$	\sum :	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$

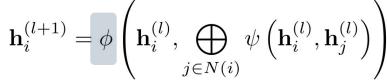
n: #vertices in a graph *L*: #layers in a GNN *d*: maximum degree

m: #edges in a graph *k*: #features

ATA STATE

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Reference	Class	Formulation of ϕ for $\mathbf{h}_{i}^{(l)}$; $\psi(\mathbf{h}_{i}, \mathbf{h}_{j})$ are stated in Table 5	Dimensions & density of computing $\phi(\cdot)$, excluding $\psi(\cdot)$		hole training iteration ing ψ from Table 5)	
GCN [128]	C-GNN			$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$	
GraphSAGE [101] (mean)	C-GNN	Depth of one GNN	$\begin{array}{c} \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$	
GIN [226]	C-GNN	layer is almost always logarithmic (nice)	$\overbrace{\blacksquare}^{\bullet}\times\ldots\times\overbrace{\blacksquare}^{\bullet}\times\Sigma$	$O(Lmk + LKnk^2)$	$O(L\log d + LK\log k)$	
CommNet [192]	C-GNN	logarithinic (nice)	logaritmine (mee)		$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
Vanilla attention [201]	A-GNN		[:::] $\times \sum$ [:]	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$	
GAT [202]	A-GNN		$ imes imes \sum$:	$O(Lmdk^2 + Lnk^2)$	$O(L\log d + L\log k)$	
Attention-based GNNs [196]	A-GNN		[;;;] × ∑ [;]	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$	
MoNet [158]	A-GNN		$ imes \sum$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$	
G-GCN [47]	MP-GNN	I		$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$	
GraphSAGE [101] (pooling)	MP-GNN	I	$[\texttt{iii}] \times \left(\texttt{ii} \parallel \left(\texttt{iii}] \times \Sigma \texttt{ii}\right)\right)$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$	
EdgeConv [216] "choice 1"	MP-GNN	[\sum [1]	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$	
EdgeConv [216] "choice 5"	MP-GNN	I	\sum []	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$	


Parallel Analysis of ϕ

n: #vertices in a graph *L*: #layers in a GNN *d*: maximum degree

m: #edges in a graph *k*: #features

The second

Reference	Class	Formulation of ϕ for $\mathbf{h}_i^{(l)}$; $\psi(\mathbf{h}_i, \mathbf{h}_j)$ are stated in Table 5	Dimensions & density of computing $\phi(\cdot)$, excluding $\psi(\cdot)$		hole training iteration ing ψ from Table 5)
GCN [128]	C-GNN		[;;;] ×∑ [;]	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GraphSAGE [101] (mean)	C-GNN	Depth of one GNN		$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GIN [226]	C-GNN	layer is almost always logarithmic (nice)	$\overbrace{\texttt{iii}}^{K \text{ times}} \times \dots \times \overbrace{\texttt{iii}}^{K \text{ times}} \times \sum \underset{\texttt{ii}}{\sum}$	$O(Lmk + LKnk^2)$	$O(L\log d + LK\log k)$
CommNet [192]	C-GNN	logaritinine (mee)	$ imes \sum$ (1)	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
Vanilla attention [201]	A-GNN	Work varies, being the	[]	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GAT [202]	A-GNN	highest for GAT. Depth	$ imes \sum$:	$O(Lmdk^2 + Lnk^2)$	$O(L\log d + L\log k)$
Attention-based GNNs [196]	A-GNN	is still logarithmic 😊	[;;;] × ∑ [;]	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
MoNet [158]	A-GNN		$[]] \times \sum []$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
G-GCN [47]	MP-GNN	1	$ imes \sum$:	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
GraphSAGE [101] (pooling)	MP-GNN	1	$[\texttt{iii}] \times \left(\texttt{ii} \parallel \left(\texttt{iiii} \times \Sigma \texttt{ii}\right)\right)$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
EdgeConv [216] "choice 1"	MP-GNN	1	\sum	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
EdgeConv [216] "choice 5"	MP-GNN	1	\sum	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$

Parallel Analysis of ϕ

n: #vertices in a graph *L*: #layers in a GNN *d*: maximum degree

m: #edges in a graph *k*: #features

State States

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Reference	Class	Formulation of ϕ for $\mathbf{h}_{i}^{(l)}$; $\psi(\mathbf{h}_{i}, \mathbf{h}_{j})$ are stated in Table 5	Dimensions & density of computing $\phi(\cdot)$, excluding $\psi(\cdot)$	· · · · · · · · · · · · · · · · · · ·	hole training iteration ing ψ from Table 5)
GCN [128]	C-GNN			$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GraphSAGE [101 (mean)] _{C-GNN}	Depth of one GNN	$[III] \times \sum [II]$ K times	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GIN [226]	C-GNN	layer is almost always logarithmic (nice)		$O(Lmk + LKnk^2)$	$O(L\log d + LK\log k)$
CommNet [192]	C-GNN	logaritinine (mee)	$ imes \sum$:	$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
Vanilla attention [201]	A-GNN	Work varies, being the		$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
GAT [202]	A-GNN	highest for GAT. Depth	$ imes \sum$:	$O(Lmdk^2 + Lnk^2)$	$O(L\log d + L\log k)$
Attention-based GNNs [196]	A-GNN	is still logarithmic 😊		$O(Lmk + Lnk^2)$	$O(L\log d + L\log k)$
MoNet [158]	A-GNN		$ imes \sum$:	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
G-GCN [47]	MP-GNN	All the models entail matrix-vector dense	$ imes \sum$:	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
GraphSAGE [101 (pooling)] MP-GNN	products and a sum of up to <i>d</i> dense vectors	$[\texttt{iii}] \times \left(\texttt{ii} \parallel \left(\texttt{iiii} \times \Sigma \texttt{ii}\right)\right)$	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
EdgeConv [216] "choice 1"	MP-GNN		\sum	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$
EdgeConv [216] "choice 5"	MP-GNN	1	\sum	$O(Lmk^2 + Lnk^2)$	$O(L\log d + L\log k)$

Parallel Analysis of \bigoplus

n: #vertices in a graphm: #edges in a graphL: #layers in a GNNk: #featuresd: maximum degree

Desta and and

aph
$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \right)$$

$$\psi\left(\mathbf{h}_{i}^{\left(l
ight)},\mathbf{h}_{j}^{\left(l
ight)}
ight)$$

spcl.inf.ethz.ch

Parallel Analysis of \bigoplus

n: #vertices in a graphmL: #layers in a GNNk:d: maximum degree

m: #edges in a graph *k*: #features

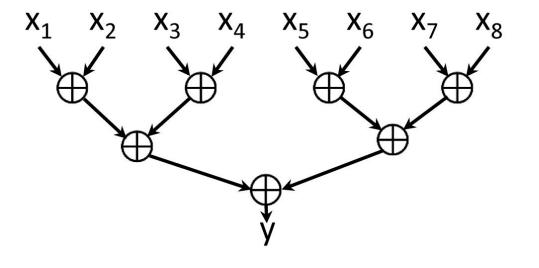
 $\mathbf{h}_{i}^{(l+1)}$

$$=\phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)}\psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Aggregation is almost always a commutative and associative operation such as min, max, or plain sum

spcl.inf.ethz.ch

Parallel Analysis of \bigoplus


n: #vertices in a graphnL: #layers in a GNNkd: maximum degree

m: #edges in a graph *k*: #features

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$

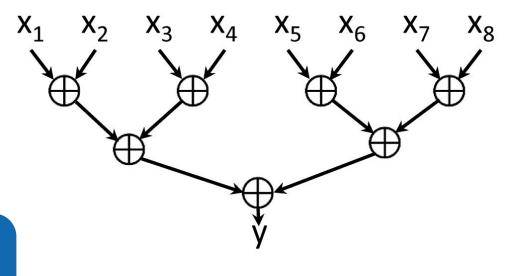
Aggregation is almost always a commutative and associative operation such as min, max, or plain sum

Using established parallel tree reduction algorithms, it takes *O(log d)* depth and *O(k d)* work.

spcl.inf.ethz.ch

Parallel Analysis of \bigoplus

n: #vertices in a graphnL: #layers in a GNNkd: maximum degree

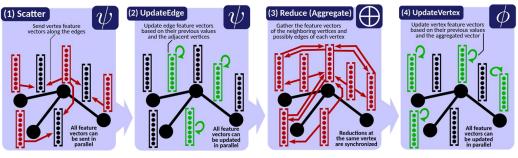

m: #edges in a graph *k*: #features

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Aggregation is almost always a commutative and associative operation such as min, max, or plain sum

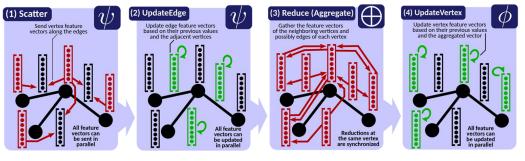
Using established parallel tree reduction algorithms, it takes *O(log d)* depth and *O(k d)* work.

Aggregation is the bottleneck in depth in many considered models. This is because *d* (maximum vertex degree) is usually much larger than *k*


$\mathbf{H}^{(l+1)} = \mathbf{A} \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

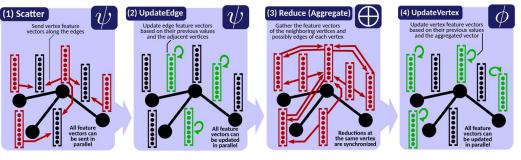
The second second second

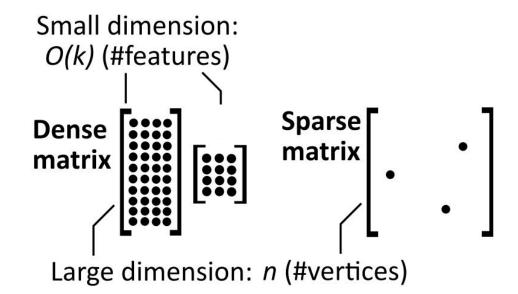
Global Formulations of GNN Models


Local formulation cheatsheet:

Global Formulations of GNN Models

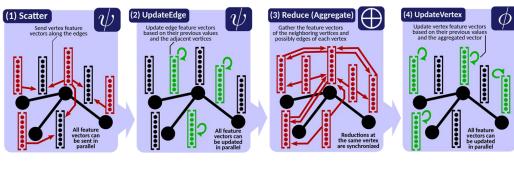
Local formulation cheatsheet:

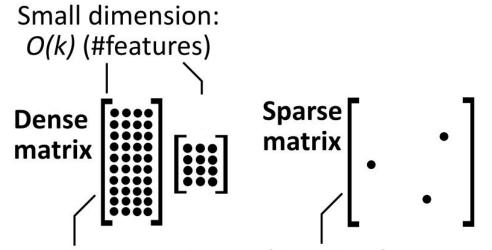




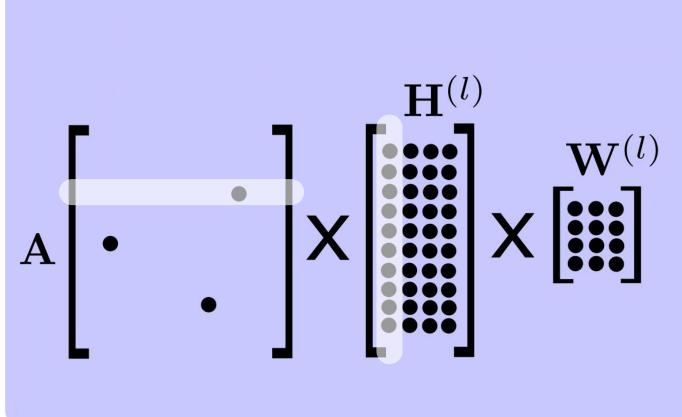
Global Formulations of GNN Models

Local formulation cheatsheet:

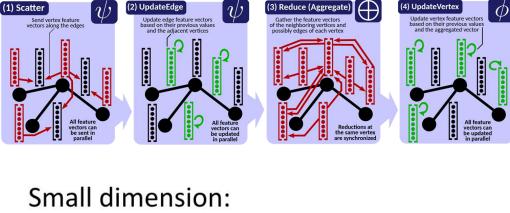


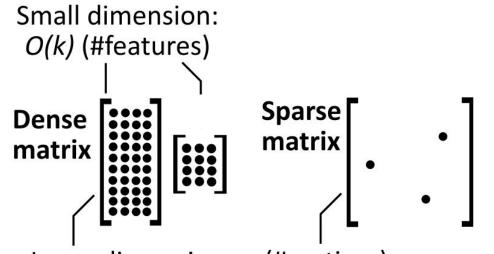


Global Formulations of GNN Models


Local formulation cheatsheet:

Large dimension: n (#vertices)

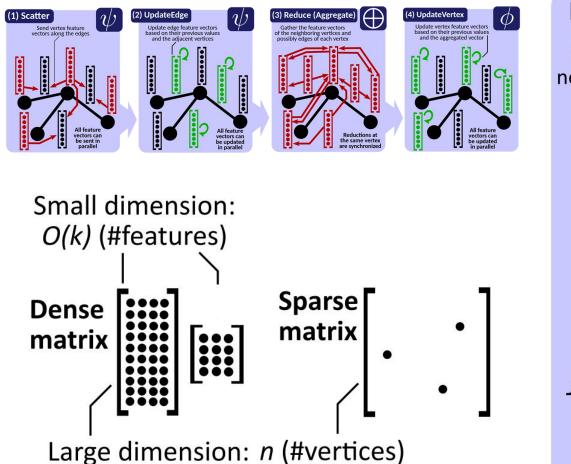

Example model: Graph Convolution Network


 $\mathbf{H}^{(l+1)} = \mathbf{A} \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

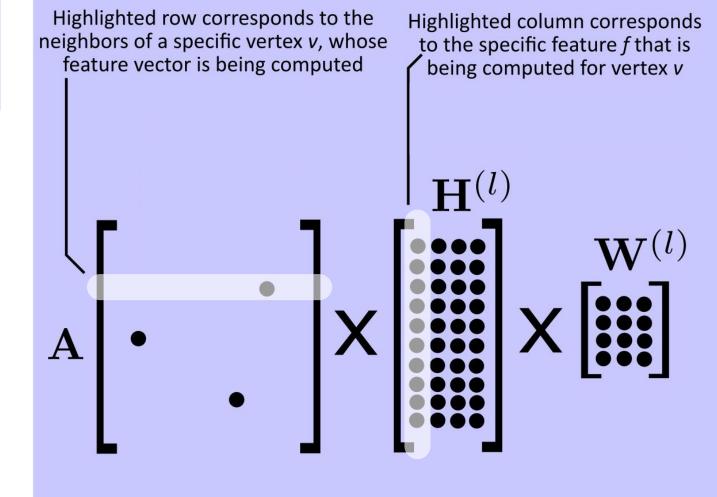
Local formulation cheatsheet:

Example model: Graph Convolution Network

Highlighted row corresponds to the neighbors of a specific vertex v, whose feature vector is being computed A

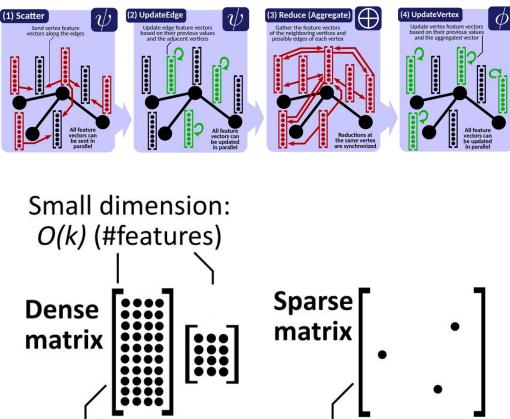


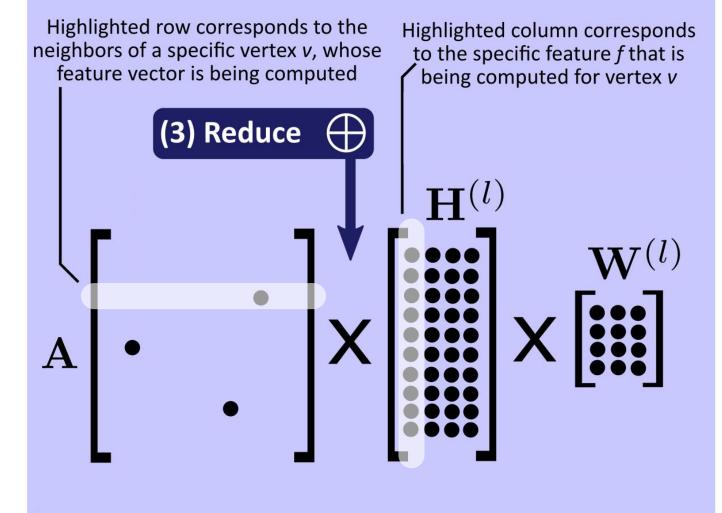
Large dimension: n (#vertices)



 $\mathbf{H}^{(l+1)} = \mathbf{A} \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

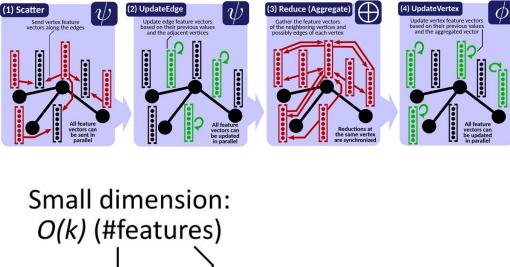
Local formulation cheatsheet:

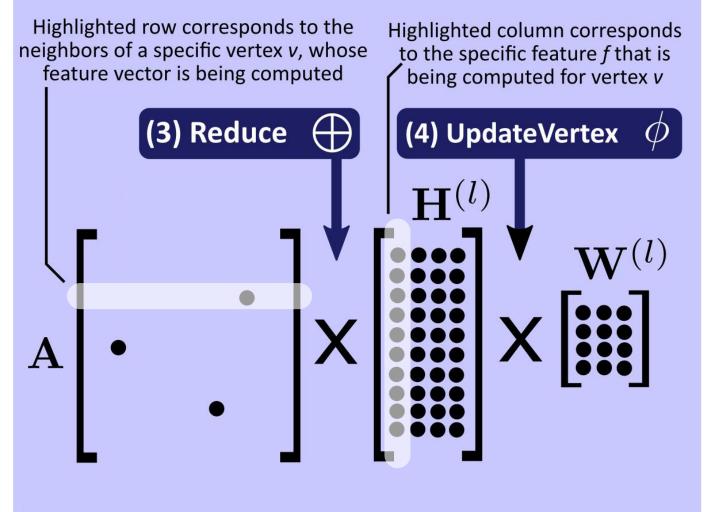

Example model: Graph Convolution Network


 $\mathbf{H}^{(l+1)} = \mathbf{A} imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$

Local formulation cheatsheet:

Large dimension: *n* (#vertices)

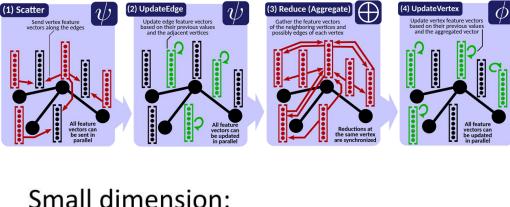

Example model: Graph Convolution Network



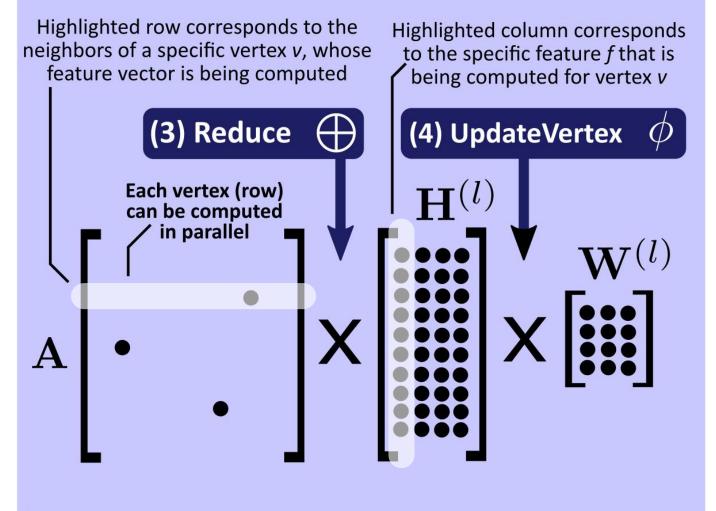
$\mathbf{H}^{(l+1)} = \mathbf{A} imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$

Local formulation cheatsheet:

Example model: Graph Convolution Network



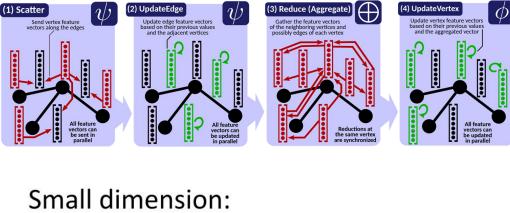
Dense matrix Sparse matrix Large dimension: *n* (#vertices)



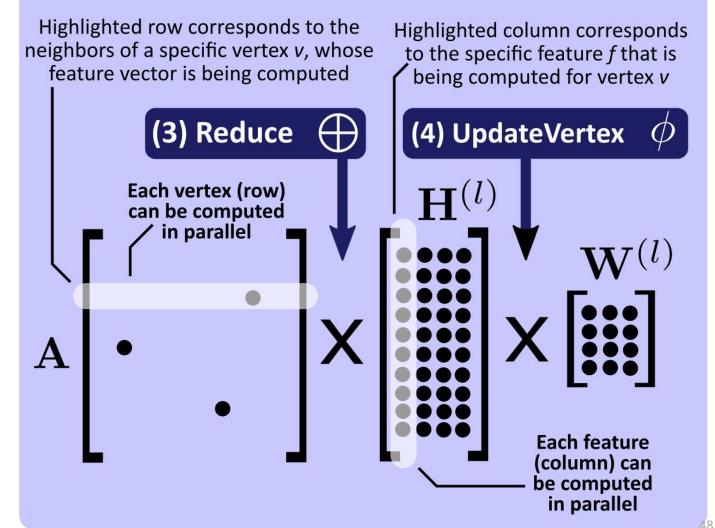
 $\mathbf{H}^{(l+1)} = \mathbf{A} \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Local formulation cheatsheet:

Example model: Graph Convolution Network



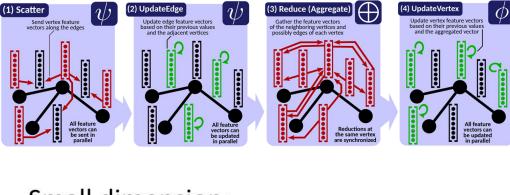
Small dimension: *O(k)* (#features) Dense matrix Large dimension: *n* (#vertices)



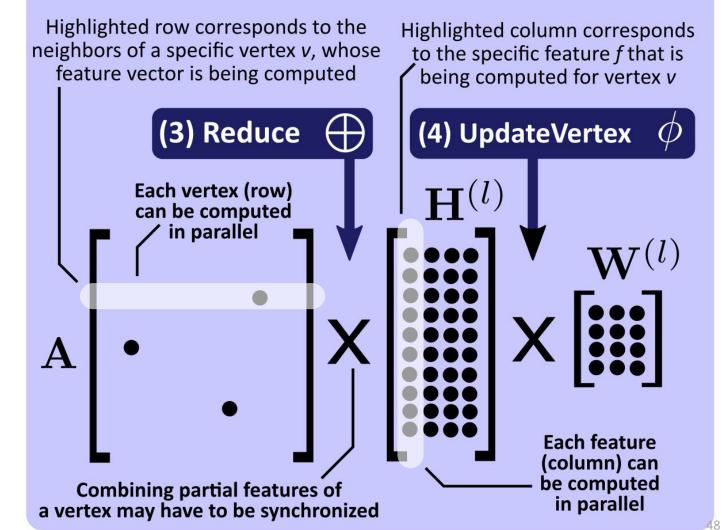
 $\mathbf{H}^{(l+1)} = \mathbf{A} imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$

Local formulation cheatsheet:

Example model: Graph Convolution Network



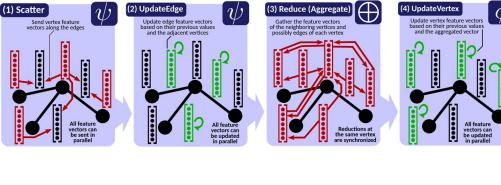
Small dimension: *O(k)* (#features) Dense matrix Large dimension: *n* (#vertices)



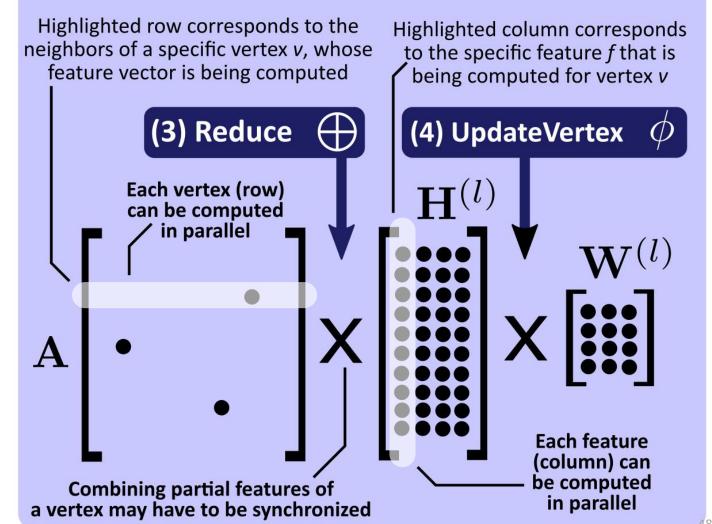
 $\mathbf{H}^{(l+1)} = \mathbf{A} \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Local formulation cheatsheet:

Example model: Graph Convolution Network



Small dimension: *O(k)* (#features) Dense matrix Large dimension: *n* (#vertices)



 $\mathbf{H}^{(l+1)} = \mathbf{A} imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$

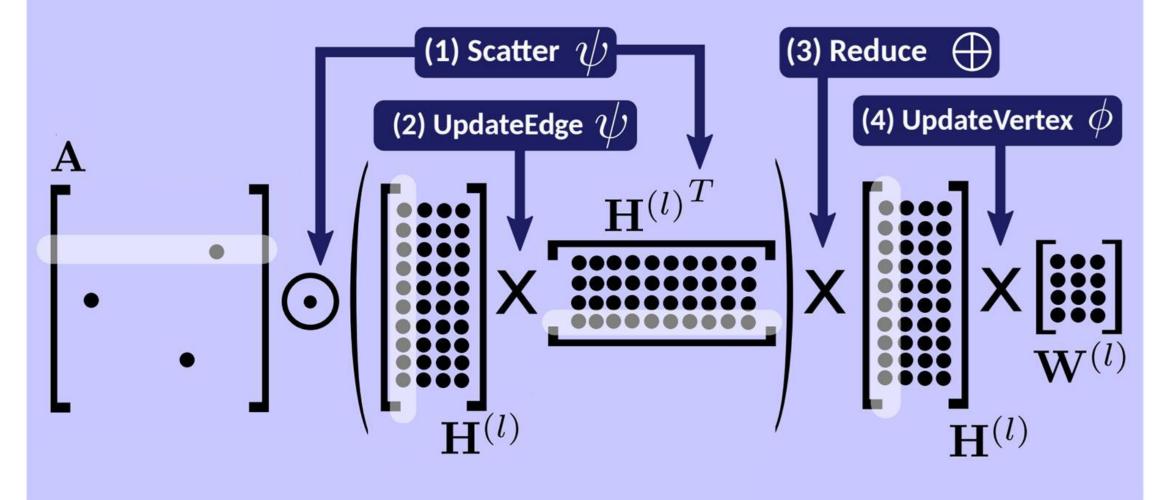
Local formulation cheatsheet:

Example model: Graph Convolution Network

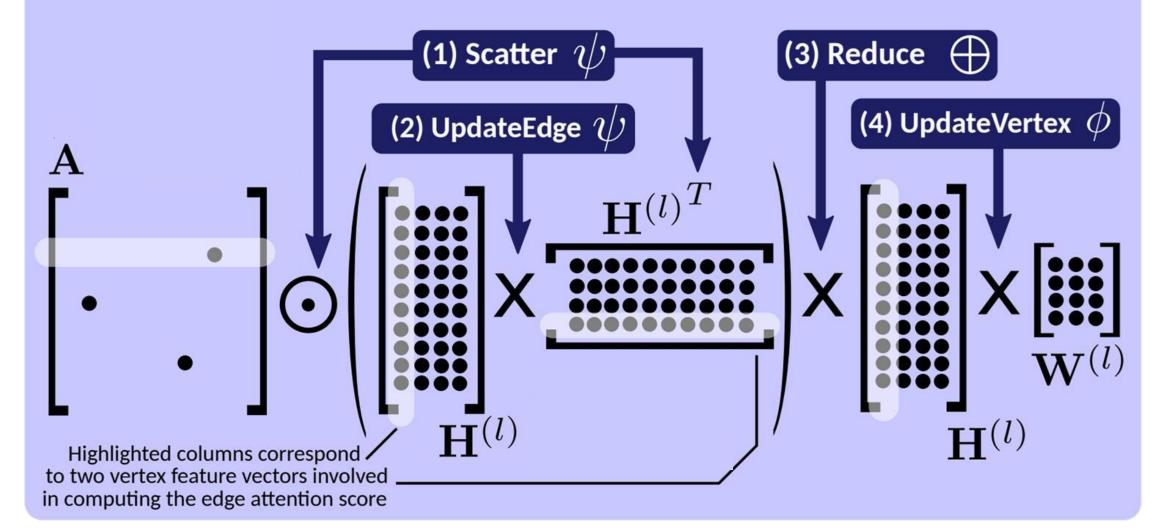
Small dimension: O(k) (#features) Dense matrix Large dimension: n (#vertices)

$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

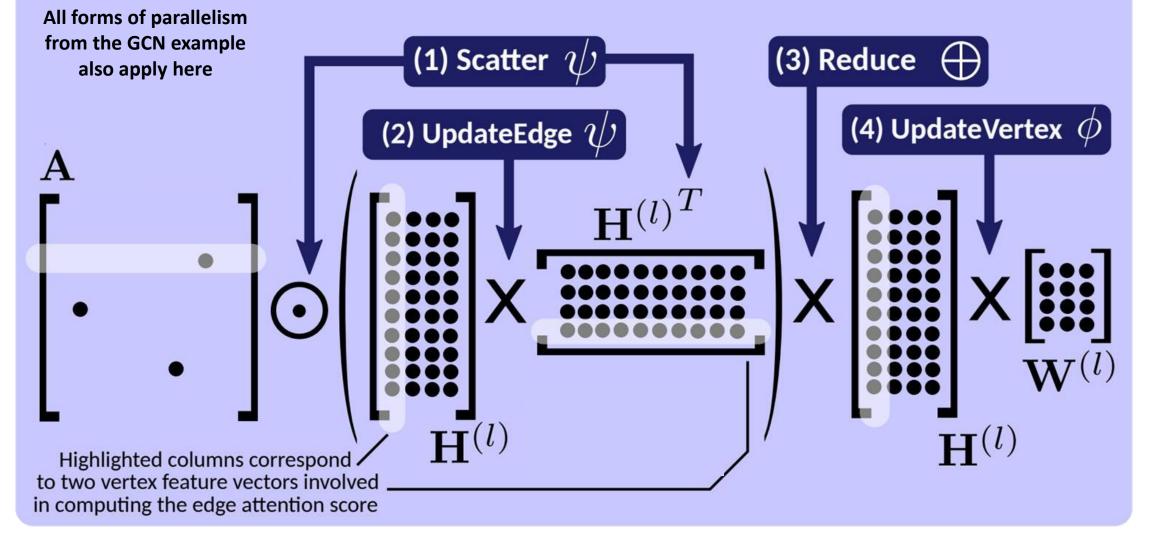
P. La Carro



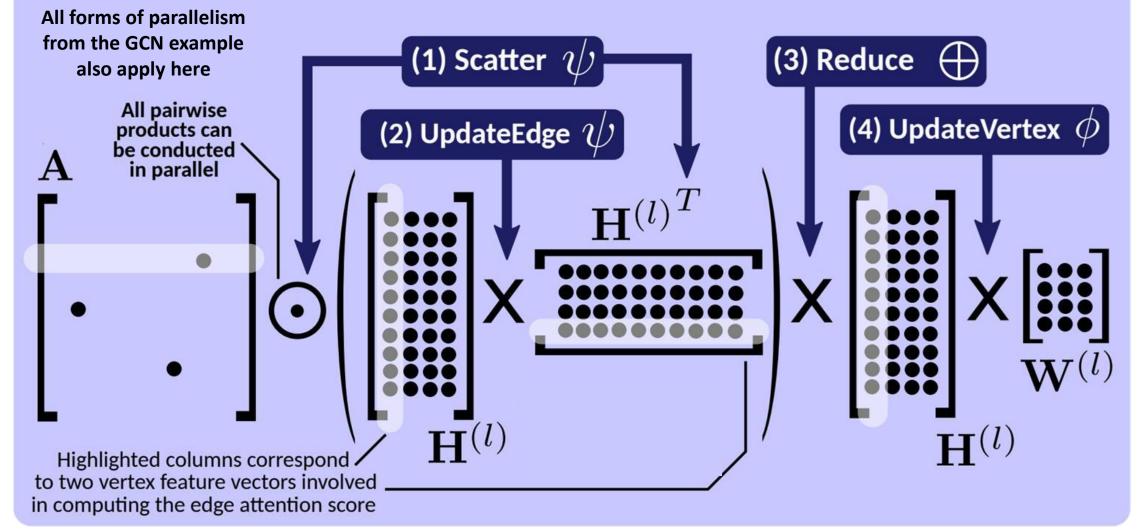
$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$



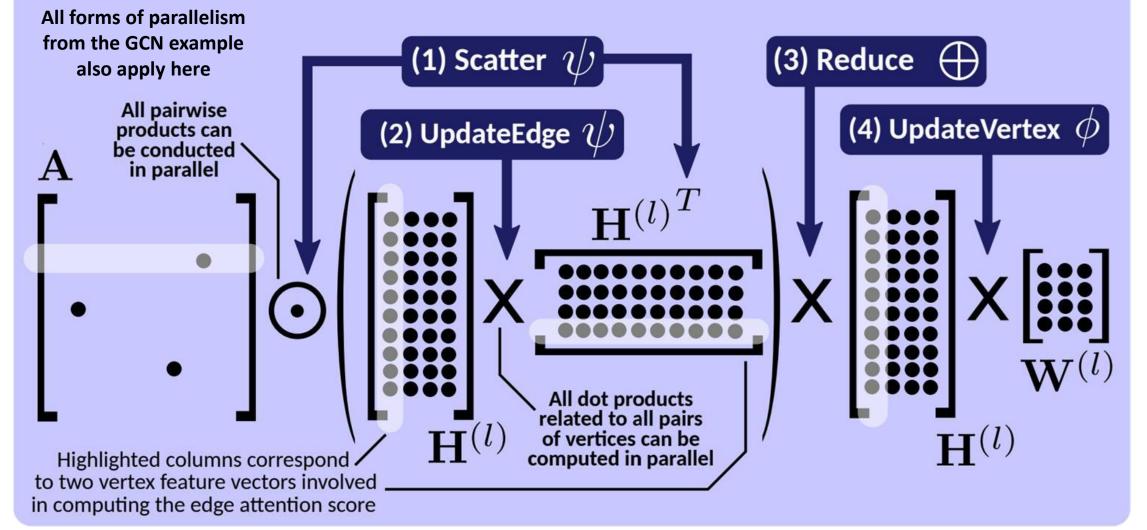
$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$



$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$



$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$



$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

$$\mathbf{H}^{(l+1)} = \left(\mathbf{A} \odot \left(\mathbf{H}^{(l)} \times \mathbf{H}^{(l)}^T \right) \right) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Global Formulations: Parallel Analysis

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Reference	
GCN [128]	
GraphSAGE [101] (mean)	
GIN [226]	
CommNet [192]	
Dot Product [201]	
EdgeConv [216] "choice 1"	
SGC [219]	
DeepWalk [168]	
ChebNet [72]	
DCNN [6], GDC [130]	
Node2Vec [97]	
LINE [148], SDNE [207]	
Auto-Regress [250], [256] PPNP	
[43], [129], [230] ARMA [38], ParWalks [221]	

and the second second

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Reference	Algebraic formulation for $\mathbf{H}^{(l+1)}$
GCN [128]	ÂHW
GraphSAGE [101] (mean)	ÂHW
GIN [226]	$\mathrm{MLP}\left(((1+\epsilon)\mathbf{I}+\widehat{\mathbf{A}})\mathbf{H} ight)$
CommNet [192]	$\mathbf{AHW}_2 + \mathbf{HW}_1$
Dot Product [201]	$\left(\mathbf{A} \odot \left(\mathbf{H} \mathbf{H}^T ight) ight) \mathbf{H} \mathbf{W}$
EdgeConv [216] "choice 1"	AHW
SGC [219]	$\widehat{\mathbf{A}}^s \mathbf{H} \mathbf{W}$
DeepWalk [168]	$\left(\sum_{s=0}^{T}\overline{\mathbf{A}}^{s} ight)\mathbf{H}\mathbf{W}$
ChebNet [72]	$\left(\sum_{s=0}^{T} heta_s \overline{\mathbf{A}}^s ight) \mathbf{H} \mathbf{W}$
DCNN [6], GDC [130]	$\left(\sum_{s=1}^T w_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$
Node2Vec [97]	$\left(rac{1}{p}\mathbf{I} + \left(1 - rac{1}{q} ight)\overline{\mathbf{A}} + rac{1}{q}\overline{\mathbf{A}}^2 ight)\mathbf{HW}$
LINE [148], SDNE [207]	$\left(\overline{\mathbf{A}}+ heta\overline{\mathbf{A}}^2 ight)\mathbf{H}\mathbf{W}$
Auto-Regress [250], [256]	$\left((1+lpha)\mathbf{I}-lpha\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$
PPNP [43], [129], [230]	$lpha \left(\mathbf{I} - (1 - lpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$
ARMA [38], ParWalks [221]	$b\left(\mathbf{I}-a\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$

A Contraction of the second

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$
GCN [128]	L	ÂHW
GraphSAGE [101] (mean)	L	ÂHW
GIN [226]	L	$\operatorname{MLP}\left(((1+\epsilon)\mathbf{I}+\widehat{\mathbf{A}})\mathbf{H}\right)$
CommNet [192]	L	$\mathbf{AHW}_2 + \mathbf{HW}_1$
Dot Product [201]	L	$\left(\mathbf{A} \odot \left(\mathbf{H} \mathbf{H}^T ight) ight) \mathbf{H} \mathbf{W}$
EdgeConv [216] "choice 1"	L	AHW
SGC [219]	Р	$\widehat{\mathbf{A}}^s \mathbf{H} \mathbf{W}$
DeepWalk [168]	Р	$\left(\sum_{s=0}^{T}\overline{\mathbf{A}}^{s} ight)\mathbf{H}\mathbf{W}$
ChebNet [72]	Р	$\left(\sum_{s=0}^{T} heta_s \overline{\mathbf{A}}^s ight) \mathbf{H} \mathbf{W}$
DCNN [6], GDC [130]	Р	$\left(\sum_{s=1}^T w_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$
Node2Vec [97]	Р	$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{HW}$
LINE [148], SDNE [207]	Р	$\left(\overline{\mathbf{A}}+ heta\overline{\mathbf{A}}^2 ight)\mathbf{H}\mathbf{W}$
Auto-Regress [250], [256]	R	$\left((1+lpha)\mathbf{I}-lpha\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$
PPNP [43], [129], [230]		$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$
ARMA [38], ParWalks [221]	R	$b\left(\mathbf{I}-a\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$

Charles and the second second

 $\left[\begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array} \right]$

 $\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right]$

 $x \in \mathbb{N}$

 $\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right]$

 $x \in \mathbb{Z}$

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$
GCN [128]	L	ÂHW
GraphSAGE [101] (mean)	L	ÂHW
GIN [226]	L	$MLP\left(((1+\epsilon)\mathbf{I}+\widehat{\mathbf{A}})\mathbf{H}\right)$
CommNet [192]	L	$\mathbf{AHW}_2 + \mathbf{HW}_1$
Dot Product [201]	L	$\left(\mathbf{A} \odot \left(\mathbf{H} \mathbf{H}^T ight) ight) \mathbf{H} \mathbf{W}$
EdgeConv [216] "choice 1"	L	AHW
SGC [219]	Р	$\widehat{\mathbf{A}}^s \mathbf{H} \mathbf{W}$
DeepWalk [168]	Р	$\left(\sum_{s=0}^{T}\overline{\mathbf{A}}^{s} ight)\mathbf{H}\mathbf{W}$
ChebNet [72]	Р	$\left(\sum_{s=0}^{T} heta_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$
DCNN [6], GDC [130]	Р	$\left(\sum_{s=1}^{T} w_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$
Node2Vec [97]	Р	$\left(rac{1}{p}\mathbf{I}+\left(1-rac{1}{q} ight)\overline{\mathbf{A}}+rac{1}{q}\overline{\mathbf{A}}^{2} ight)\mathbf{HW}$
LINE [148], SDNE [207]	Р	$\left(\overline{\mathbf{A}}+ heta\overline{\mathbf{A}}^2 ight)\mathbf{H}\mathbf{W}$
Auto-Regress [250], [256]	R	$\left((1+lpha)\mathbf{I}-lpha\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$
PPNP [43], [129], [230]	R	$lpha \left(\mathbf{I} - (1 - lpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$ $b \left(\mathbf{I} - a \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$
ARMA [38], ParWalks [221]	R	$b\left(\mathbf{I}-a\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$

No. 12 Annual States

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

	Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$	Dimensions & density of deriving $\mathbf{H}^{(l+1)}$
	GCN [128]	L	ÂHW	
	GraphSAGE [101 (mean)] _L	ÂHW	
[•]	GIN [226]	L	$\mathrm{MLP}\left(((1+\epsilon)\mathbf{I}+\widehat{\mathbf{A}})\mathbf{H}\right)$	$[::] \times [:] \times [::] \times \times [::]$
	CommNet [192]	L	$\mathbf{AHW}_2 + \mathbf{HW}_1$	
	Dot Product [201]] L	$\left(\mathbf{A} \odot \left(\mathbf{H} \mathbf{H}^T ight) \right) \mathbf{H} \mathbf{W}$	
	EdgeConv [216] "choice 1"	L	AHW	
	SGC [219]	Р	$_{\hat{\mathbf{A}}^s\mathbf{HW}}$ x	$\in \mathbb{N}$ $ imes$ iii
Γ .•] x	DeepWalk [168]	Р	$\left(\sum_{s=0}^{T}\overline{\mathbf{A}}^{s} ight)\mathbf{H}\mathbf{W}$	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{\circ} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$
••••	ChebNet [72]	Р	$\left(\sum_{s=0}^{T} heta_s \overline{\mathbf{A}}^s ight) \mathbf{H} \mathbf{W}$	$\left(\begin{bmatrix} \vdots \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \vdots \end{bmatrix}^{T}\right) \times \begin{bmatrix} \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \end{bmatrix}$
$x \in \mathbb{N}$	DCNN [6], GDC [130]	Р	$\left(\sum_{s=1}^T w_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$	
$w \in \mathbb{N}$	Node2Vec [97]	Р	$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{HW}$	$V\left(\begin{bmatrix} \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \end{bmatrix}^{2}\right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$
	LINE [148], SDNE [207]	Р	$\left(\overline{\mathbf{A}}+ heta\overline{\mathbf{A}}^2 ight)\mathbf{H}\mathbf{W}$	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^2 \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$
	Auto-Regress [250], [256]	R	$\left((1+lpha)\mathbf{I}-lpha\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$	
 ,	PPNP [43], [129], [230]		$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$	$\begin{bmatrix} \vdots \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$
$x \in \mathbb{Z}$	ARMA [38], ParWalks [221]	R	$b\left(\mathbf{I}-a\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$	$\begin{bmatrix} \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$

North and a state of the state

 $\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right]$

 $x \in \mathbb{N}$

 $x \in \mathbb{Z}$

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$	Dimensions & density of deriving $\mathbf{H}^{(l+1)}$	Work & depth (one training iteration or	
GCN [128]	L	ÂHW		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
GraphSAGE [101] (mean)	L	ÂHW		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
GIN [226]	L	$MLP\left(((1+\epsilon)\mathbf{I}+\widehat{\mathbf{A}})\mathbf{H}\right)$		$O(mkL + KLnk^2)$	$O(LK\log k + LK\log k)$
CommNet [192]	L	$\mathbf{AHW}_2 + \mathbf{HW}_1$		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
Dot Product [201]	L	$\left(\mathbf{A} \odot \left(\mathbf{H} \mathbf{H}^T ight) ight) \mathbf{H} \mathbf{W}$		$O(Lmk + Lnk^2)$	$O(L\log k + L\log d)$
EdgeConv [216] "choice 1"	L	AHW		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
SGC [219]	Р	$\widehat{\mathbf{A}}^s \mathbf{H} \mathbf{W}$		$O(mn\log s + nk^2)$	$O(\log k + \log s \log d)$
DeepWalk [168]	Р	$\left(\sum_{s=0}^{T}\overline{\mathbf{A}}^{s} ight)\mathbf{H}\mathbf{W}$	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \blacksquare \times \blacksquare$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
ChebNet [72]	Р	$\left(\sum_{s=0}^{T} heta_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$	$\left(\left[\vdots \right]^{0} + \dots + \left[\vdots \right]^{T} \right) \times \left[\times \right] \times \left[\vdots \right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
DCNN [6], GDC [130]	Р	$\left(\sum_{s=1}^T w_s \overline{\mathbf{A}}^s\right) \mathbf{H} \mathbf{W}$	$\left(\left[\begin{array}{c} \vdots \end{array}\right]^{1} + \ldots + \left[\begin{array}{c} \vdots \end{array}\right]^{T}\right) \times \left[\begin{array}{c} \vdots \end{array}\right] \times \left[\begin{array}{c} \vdots \end{array}\right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
Node2Vec [97]	Р	$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{HW}$	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{2} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn+nk^2)$	$O(\log k + \log d)$
LINE [148], SDNE [207]	Р	$\left(\overline{\mathbf{A}}+ heta\overline{\mathbf{A}}^2 ight)\mathbf{H}\mathbf{W}$	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^2 \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn+nk^2)$	$O(\log k + \log d)$
Auto-Regress [250], [256]	R	$\left((1+lpha)\mathbf{I}-lpha\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$	$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\vdots \right] \times \left[\vdots \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
PPNP [43], [129], [230]	R	$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$	$\begin{bmatrix} \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \end{bmatrix}$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
ARMA [38], ParWalks [221]	R	$b\left(\mathbf{I}-a\widehat{\mathbf{A}} ight)^{-1}\mathbf{H}\mathbf{W}$	$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\vdots \right] \times \left[\vdots \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$

A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A

 $x \in \mathbb{N}$

 $\left[\vdots \right]$

 $x \in \mathbb{Z}$

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$		Dimensions & density of deriving $\mathbf{H}^{(l+1)}$	Work & depth (one training iteration or	
GCN [128]	L				$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
GraphSAGE [101] (mean)	L			[∶∶] × ∭ × Ⅲ	$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
GIN [226]	L				$O(mkL + KLnk^2)$	$O(LK \log k + LK \log d)$
CommNet [192]	L		_	$[\cdot] \times [] \times [] \times [] \times [] \times []$	$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
Dot Product [201]	L				$O(Lmk + Lnk^2)$	$O(L\log k + L\log d)$
EdgeConv [216] "choice 1"	L		Ŀ	•••	$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
SGC [219]	Р		x	$\in \mathbb{N}$ ×m	$O(mn\log s + nk^2)$	$O(\log k + \log s \log d)$
DeepWalk [168]	Р			$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{\circ} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
ChebNet [72]	Р			$\left(\left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right]^{0} + \ldots + \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right]^{T}\right) \times \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right] \times \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
DCNN [6], GDC [130]	Р			$\left(\left[\begin{array}{c} \vdots \\ \vdots \end{array}\right]^{1} + \ldots + \left[\begin{array}{c} \vdots \\ \vdots \end{array}\right]^{T}\right) \times \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right] \times \left[\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \end{array}\right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
Node2Vec [97]	Р				$O(mn+nk^2)$	$O(\log k + \log d)$
LINE [148], SDNE [207]	Р			$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^2 \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn+nk^2)$	$O(\log k + \log d)$
Auto-Regress [250], [256]	R				$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
PPNP [43], [129], [230]	R			$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\begin{array}{c} \\ \end{array} \right] \times \left[\begin{array}{c} \\ \end{array} \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
ARMA [38], ParWalks [221]	R			$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\begin{array}{c} \\ \end{array} \right] \times \left[\begin{array}{c} \\ \end{array} \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$

ALCON THE REAL PROPERTY AND

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

	Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$	Dimensions & density of deriving $\mathbf{H}^{(l+1)}$	Work & depth (one training iteration or	
	GCN [128]	L			$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
	GraphSAGE [101] (mean)	L	Dopth of one		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
[•]	GIN [226]	L	Depth of one layer (in Linear	$ \times	$O(mkL + KLnk^2)$	$O(LK\log k + LK\log d)$
	CommNet [192]	L	models) is		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
	Dot Product [201]	L	logarithmic	$\begin{bmatrix} \vdots \end{bmatrix} \odot \left(\begin{bmatrix} \bullet \bullet \\ \bullet \bullet \end{bmatrix} \times \begin{bmatrix} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{bmatrix} \right) \times \begin{bmatrix} \bullet \bullet \\ \bullet \bullet \end{bmatrix} \times \begin{bmatrix} \bullet \bullet \\ \bullet \bullet \end{bmatrix}$	$O(Lmk + Lnk^2)$	$O(L\log k + L\log d)$
	EdgeConv [216] "choice 1"	L			$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
	SGC [219]	Р			$O(mn\log s + nk^2)$	$O(\log k + \log s \log d)$
$\llbracket \cdot \cdot \rrbracket^x$	DeepWalk [168]	Р		$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \left[\begin{bmatrix} x \\ y \end{bmatrix} \times \left[\begin{bmatrix} y \\ y \end{bmatrix} \right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
•••	ChebNet [72]	Р		$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \left[\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
$x \in \mathbb{N}$	DCNN [6], GDC [130]	Р		$\left(\left[\begin{array}{c} \\ \vdots \\ \end{array}\right]^{1} + \dots + \left[\begin{array}{c} \\ \vdots \\ \end{array}\right]^{T}\right) \times \left[\begin{array}{c} \\ \end{array}\right] \times \left[\begin{array}{c} \\ \end{array}\right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
$x \in \mathbb{N}$	Node2Vec [97]	Р		$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{2} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn+nk^2)$	$O(\log k + \log d)$
	LINE [148], SDNE [207]	Р		$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^2 \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn+nk^2)$	$O(\log k + \log d)$
$[\cdot \cdot]^x$	Auto-Regress [250], [256]	R			$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
 ,	PPNP [43], [129], [230]	R		$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\begin{array}{c} \vdots \end{array} \right] \times \left[\begin{array}{c} \vdots \end{array} \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
$x \in \mathbb{Z}$	ARMA [38], ParWalks [221]	R		$\begin{bmatrix} \vdots \\ \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$

Children and a start of the start of the

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

	Reference	Туре	Algebraic formulation for $\mathbf{H}^{(l+1)}$	Dimensions & density of deriving $\mathbf{H}^{(l+1)}$	Work & depth (one training iteration or	
	GCN [128]	L			$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
	GraphSAGE [101] (mean)	L	Depth of one		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
[•]	GIN [226]	L	layer (in Linear		$O(mkL + KLnk^2)$	$O(LK\log k + LK\log d)$
	CommNet [192]	L	models) is		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
	Dot Product [201]	L	logarithmic	• • • • • • • • • • • • • • • • • • •	$O(Lmk + Lnk^2)$	$O(L\log k + L\log d)$
	EdgeConv [216] "choice 1"	L			$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$
	SGC [219]	Р		$x\in\mathbb{N}$. The set of $x\in\mathbb{N}$	$O(mn\log s + nk^2)$	$O(\log k + \log s \log d)$
F . I^x	DeepWalk [168]	Р	Depth is	$\left(\left[\vdots \right]^{\circ} + \dots + \left[\vdots \right]^{T} \right) \times \left[\blacksquare \times \left[\blacksquare \right] \right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
•••	ChebNet [72]	Р	logarithmic (in	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
$x \in \mathbb{N}$	DCNN [6], GDC [130]	Р	Polynomial	$\left(\begin{bmatrix} \vdots \vdots \end{bmatrix}^{1} + \dots + \begin{bmatrix} \vdots \end{bmatrix}^{T} \right) \times \begin{bmatrix} \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \end{bmatrix}$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$
	Node2Vec [97]	Р	models)	$\left(\left[\vdots \right]^{0} + \dots + \left[\vdots \right]^{2} \right) \times \left[\vdots \right] \times \left[\vdots \right]$	$O(mn + nk^2)$	$O(\log k + \log d)$
	LINE [148], SDNE [207]	Р		$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^2 \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn + nk^2)$	$O(\log k + \log d)$
••] *	Auto-Regress [250], [256]	R		$\begin{bmatrix} \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{\times} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
 ,	PPNP [43], [129], [230]	R		$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\vdots \right] \times \left[\vdots \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$
$x \in \mathbb{Z}$	ARMA [38], ParWalks [221]	R		$\left[\begin{array}{c} \vdots \end{array} \right]^{-1} \times \left[\vdots \right] \times \left[\vdots \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$

Contraction States

50

Global Formulations: Parallel Analysis

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

	Reference	Type Algebraic formulation for $\mathbf{H}^{(l+1)}$		Dimensions & density of deriving $\mathbf{H}^{(l+1)}$	Work & depth (one whole training iteration or inference)		
	GCN [128]	L			$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$	
	GraphSAGE [101] (mean)	L	Donth of one		$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$	
[•]	GIN [226]	L	Depth of one layer (in Linear		$O(mkL + KLnk^2)$	$O(LK\log k + LK\log d)$	
	CommNet [192]	L	models) is	[···] × ∰ × ⊯ + ∰ × ⊯	$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$	
	Dot Product [201]	L	logarithmic		$O(Lmk + Lnk^2)$	$O(L\log k + L\log d)$	
	EdgeConv [216] "choice 1"	L			$O(mkL + Lnk^2)$	$O(L\log k + L\log d)$	
	SGC [219]	Р			$O(mn\log s + nk^2)$	$O(\log k + \log s \log d)$	
Г••1 ^x	DeepWalk [168]	Р	Depth is	$\left(\left[\begin{array}{c} \\ \end{array} \right]^{0} + \ldots + \left[\begin{array}{c} \\ \end{array} \right]^{T} \right) \times \left[\begin{array}{c} \\ \end{array} \right] \times \left[\begin{array}{c} \\ \end{array} \right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$	
•••	ChebNet [72]	Р	logarithmic (in	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{T} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$	
$x \in \mathbb{N}$	DCNN [6], GDC [130]	Р	Polynomial	$\left(\left[\begin{array}{c} \vdots \\ \vdots \end{array}\right]^{1} + \ldots + \left[\begin{array}{c} \vdots \\ \vdots \end{array}\right]^{T}\right) \times \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right] \times \left[\begin{array}{c} \vdots \\ \vdots \\ \end{array}\right]$	$O(mn\log T + nk^2)$	$O(\log k + \log T \log d)$	
$x \in \mathbb{N}$	Node2Vec [97]	Р	models)	$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{0} + \dots + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{2} \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn + nk^2)$	$O(\log k + \log d)$	
	LINE [148], SDNE [207]	Р		$\left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^2 \right) \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(mn + nk^2)$	$O(\log k + \log d)$	
[.•] ^{<i>x</i>}	Auto-Regress [250], [256]	R	Depth is square		$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$	
·•• · · · ·	PPNP [43], [129], [230]	R	logarithmic (in	$\left[\begin{array}{c} \\ \end{array} \right]^{-1} \times \left[\begin{array}{c} \\ \end{array} \right] \times \left[\begin{array}{c} \\ \end{array} \right]$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$	
$x \in \mathbb{Z}$	ARMA [38], ParWalks [221]	R	Rational models)	$\begin{bmatrix} \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}^{-1} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	$O(n^3 + nk^2)$	$O(\log^2 n + \log k)$	

Contraction in the second

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

The sector with

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$$

Some models have both formulations, e.g., Graph Convolution Network. Such models have the same work/depth in both formulations (i.e., they have fundamentally the same amount of parallelism)

$$\mathbf{h}_{i}^{(l+1)} = ReLU\left(\mathbf{W}^{(l)} \times \left(\sum_{j \in \widehat{N}(i)} \frac{1}{\sqrt{d_{i}d_{j}}} \mathbf{h}_{j}^{(l)}\right)\right)$$

 $\mathbf{H}^{(l+1)} = ReLU(\mathbf{A}\mathbf{H}^{(l)}\mathbf{W}^{(l)})$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

The sector with

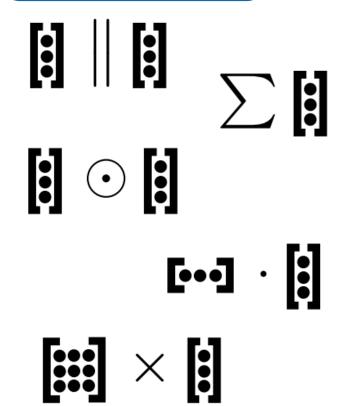
$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

the second second

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (\dots) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Different linear algebra kernels are used

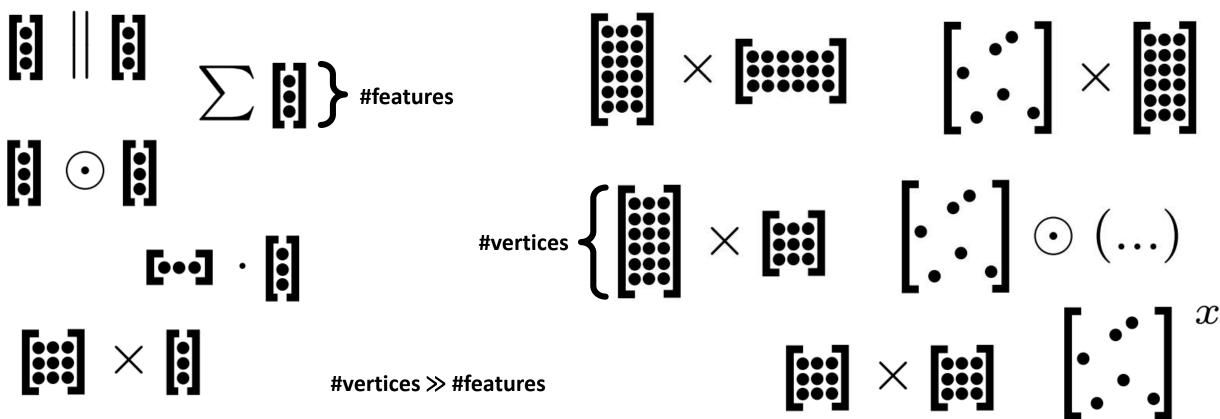


 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

A CALL STREET

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Different linear algebra kernels are used

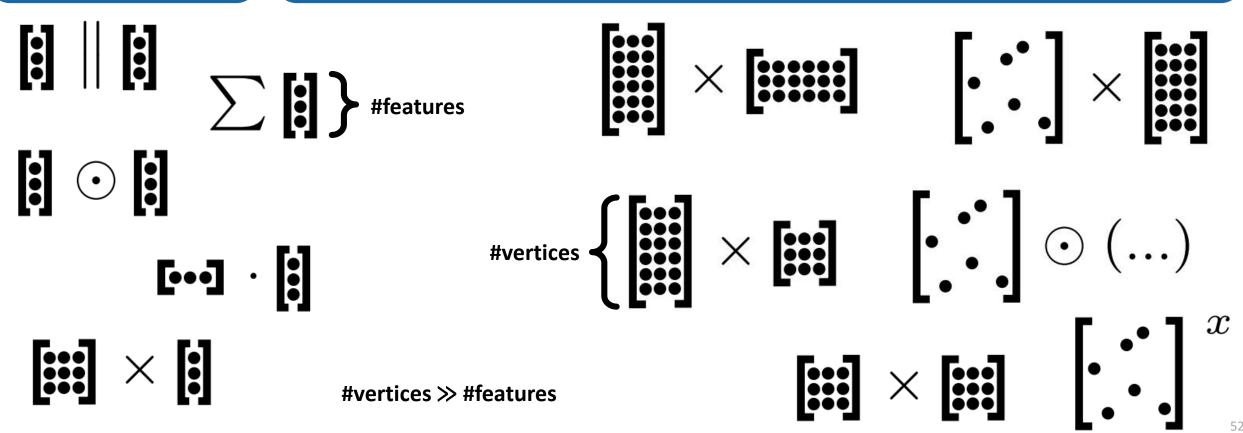

spcl.inf.ethz.ch

Local vs. Global Formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Different linear algebra kernels are used


52

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Different linear algebra kernels are used Potential for different optimizations. For example, **there may be more opportunities to use vectorization in the global formulations** (one can vectorize matrices that group all vertices and edges)

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Charles and the same

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$$

Some models (A-GNNs, MP-GNNs) do **not** have known global formulations. One example is the original Graph Attention (GAT) model

$$\psi: \quad \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \| \mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{y \in \widehat{N}(i)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{i} \| \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{j}$$

$$\phi: \mathbf{W} \times \left(\sum_{j \in \widehat{N}(i)} \psi(\mathbf{h}_i, \mathbf{h}_j) \right)$$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

A TA MARCAN PARTY

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

The second and

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Polynomial & Rational models do **not** have known local formulations (e.g., Node2Vec or PPNP)

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

The second second

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Polynomial & Rational models do **not** have known local formulations (e.g., Node2Vec or PPNP)

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{HW}$$

$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

$$\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$$

Polynomial & Rational models do **not** have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* (Polynomial) and *O(log² n)* (Rational) depth

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{HW}$$

$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

and the second second second

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) imes \mathbf{H}^{(l)} imes \mathbf{W}^{(l)}$

Polynomial & Rational models do **not** have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* (Polynomial) and *O(log² n)* (Rational) depth

While they have one iteration, making *L* vanish, they require deriving a given power of *A*

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{H}\mathbf{W}$$

$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Local vs. Global Formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Polynomial & Rational models do **not** have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* (Polynomial) and *O(log² n)* (Rational) depth While they have one iteration, making *L* vanish, they require deriving a given power of *A*

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{H}\mathbf{W}$$

As computing powers of **A** is not interleaved with non-linearities (as is the case with many local models), the increase in work and depth is **only logarithmic**, indicating **more parallelism**

$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Local vs. Global Formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Polynomial & Rational models do **not** have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* (Polynomial) and *O(log² n)* (Rational) depth

While they have one iteration, making *L* vanish, they require deriving a given power of *A*

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\overline{\mathbf{A}} + \frac{1}{q}\overline{\mathbf{A}}^2\right)\mathbf{H}\mathbf{W}$$

PPNP:

$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

As computing powers of **A** is not interleaved with non-linearities (as is the case with many local models), the increase in work and depth is **only logarithmic**, indicating **more parallelism**

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

A DESCRIPTION OF THE PARTY OF T

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* (Polynomial) and *O(log² n)* (Rational) depth

While they have one iteration, making *L* vanish, they require deriving a given power of **A**

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\mathbf{\overline{A}} + \frac{1}{q}\mathbf{\overline{A}}^2\right)\mathbf{HW}$$

As computing powers of **A** is not interleaved with non-linearities (as is the case with many local models), the increase in work and depth is **only logarithmic**, indicating **more parallelism**

PPNP:

$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

 $\mathbf{H}^{(l+1)} = f(\mathbf{A}) \odot (...) \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

Models with only local formulations: potential for better representative power

ons (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* (Polynomial) and *O(log² n)* (Rational) depth Vhile they have one iteration, making *L* vanish, they require deriving a given power of **A**

A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A CALL AND A

Node2Vec:

$$\left(\frac{1}{p}\mathbf{I} + \left(1 - \frac{1}{q}\right)\mathbf{\overline{A}} + \frac{1}{q}\mathbf{\overline{A}}^2\right)\mathbf{HW}$$

As computing powers of **A** is not interleaved with non-linearities (as is the case with many local models), the increase in work and depth is **only logarithmic**, indicating **more parallelism**

PPNP:

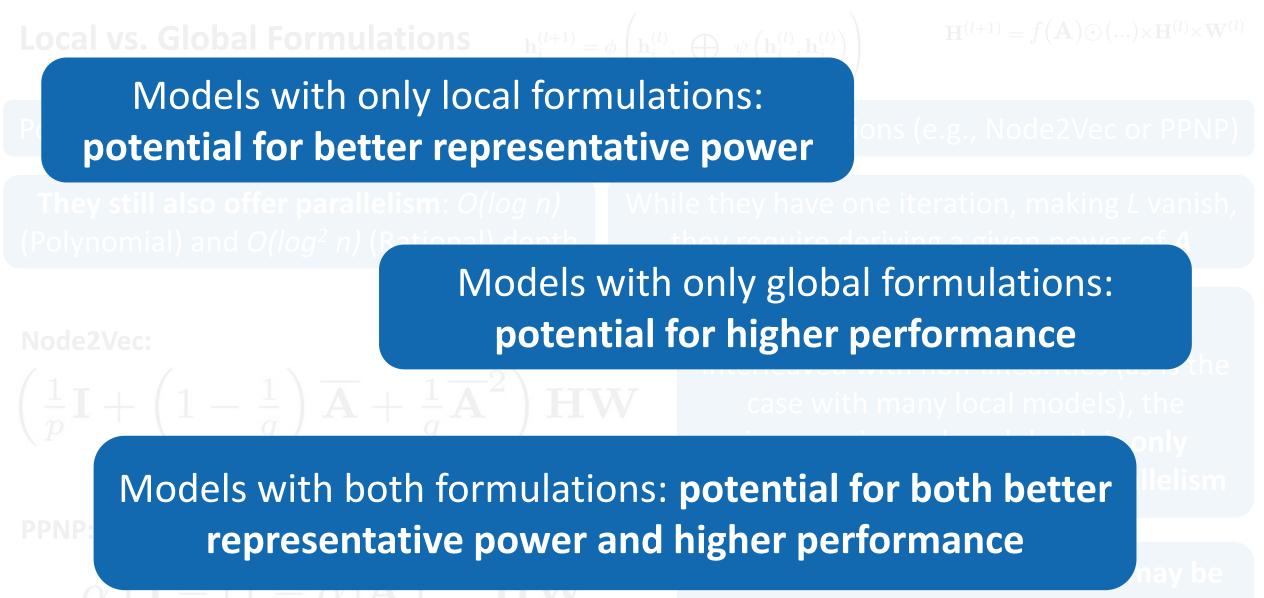
$$\alpha \left(\mathbf{I} - (1 - \alpha) \widehat{\mathbf{A}} \right)^{-1} \mathbf{H} \mathbf{W}$$

Models with only local formulations: potential for better representative power

ons (e.g., Node2Vec or PPNP)

They still also offer parallelism: *O(log n)* While they have one iteration, making *L* vanish, (Polynomial) and *O(log² n*) (Rational) depth whether they require deriving a given newer of **A**

Node2Vec:


Models with only global formulations: potential for higher performance

A CATAL AND A COMMENT

case with many local models), the increase in work and depth is **only** garithmic, indicating more parallelism

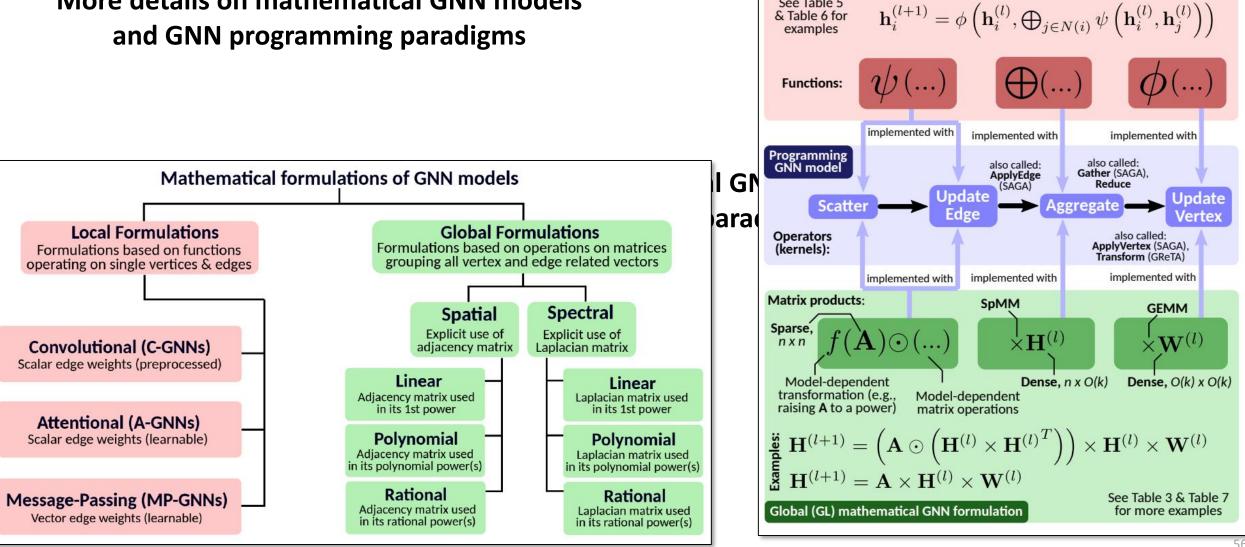
PPNP:

State States

lower, due to the lack of non-linearities

Time for some "Bragging slides" ;-) (i.e., what's also in there)

... Check the paper 🕲

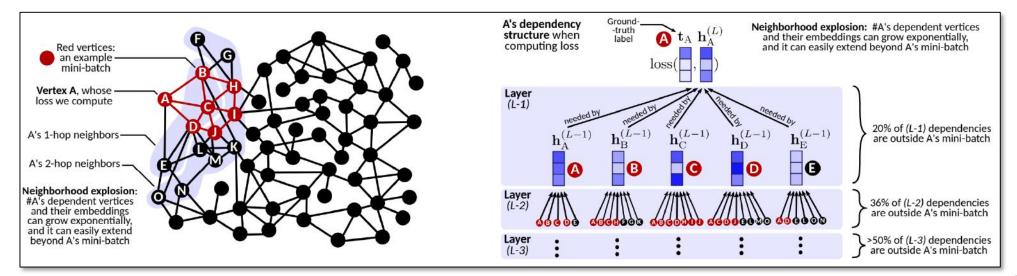


Local (LC) mathematical GNN formulation

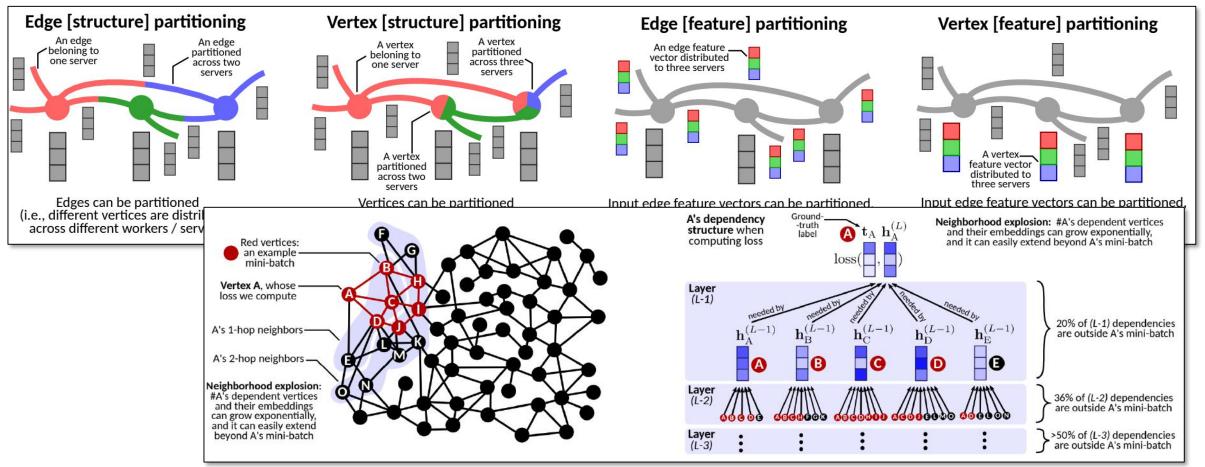
See Table 5

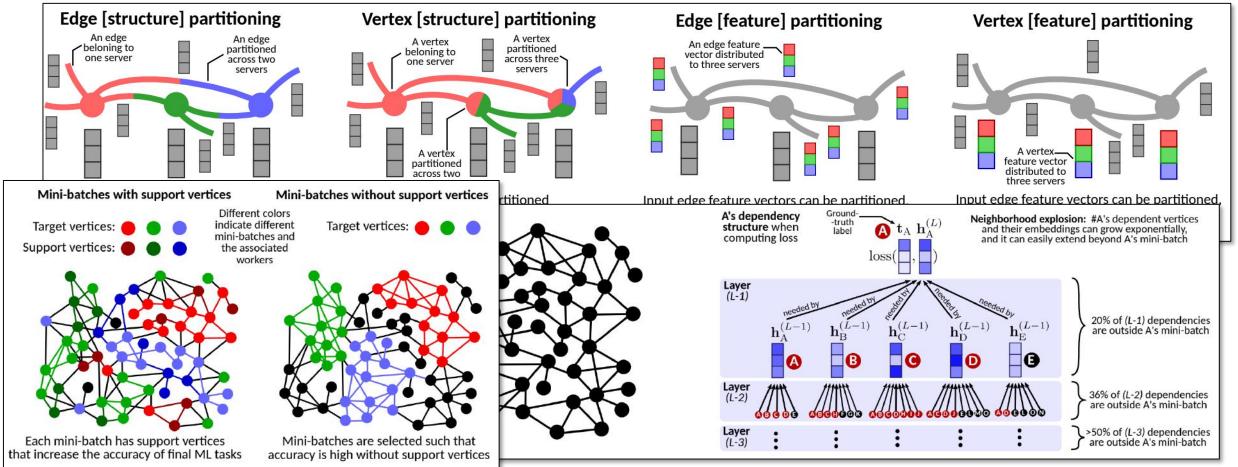
... Check the paper 😳

More details on mathematical GNN models and GNN programming paradigms



a starter


... Check the paper 😊


... Check the paper 🙂

... Check the paper 🙂

... Check the paper 😊

... Check the paper 🕲

More work-depth analyses, plus communication & synchronization

Method	ethod Work & depth in one training iteration											
Full-batch training schemes:												
Full-batch [128] Weight-tying [139] RevGNN [139]	$O\left(Lmk+Lnk^2 ight) \\ O\left(Lmk+Lnk^2 ight) \\ O\left(Lmk+Lnk^2 ight)$	$O(L \log k + L \log d)$										
Mini-batch training schemes:												
VR-GCN [60] FastGCN [61] Cluster-GCN [65]	$O\left(Lmk + Lnk^{2} + c^{L}nk\right)$ $O\left(Lmk + Lnk^{2} + c^{L}nk\right)$ $O\left(Lmk + Lnk^{2} + cLnk^{2}\right)$ $O\left(Lmk + Lnk^{2} + cLnk^{2}\right)$ $O\left(W_{pre} + Lmk + Lnk^{2}\right)$ $O\left(W_{pre} + Lmk + Lnk^{2}\right)$	$ \begin{array}{l} 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$										

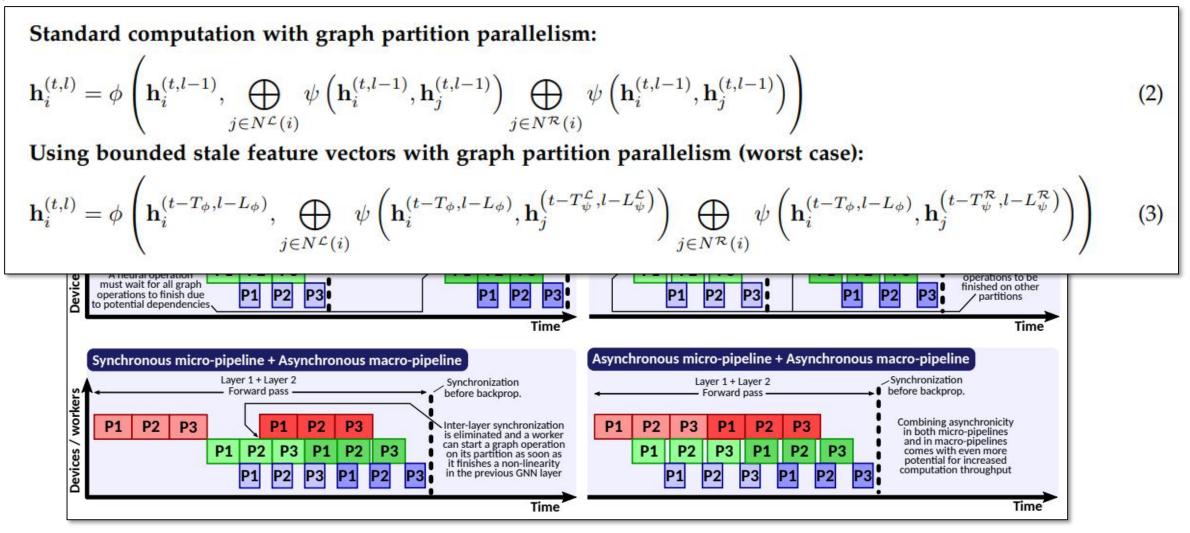
C. Landers and

... Check the paper ③ Asynchronous GNNs

59

... Check the paper 😊

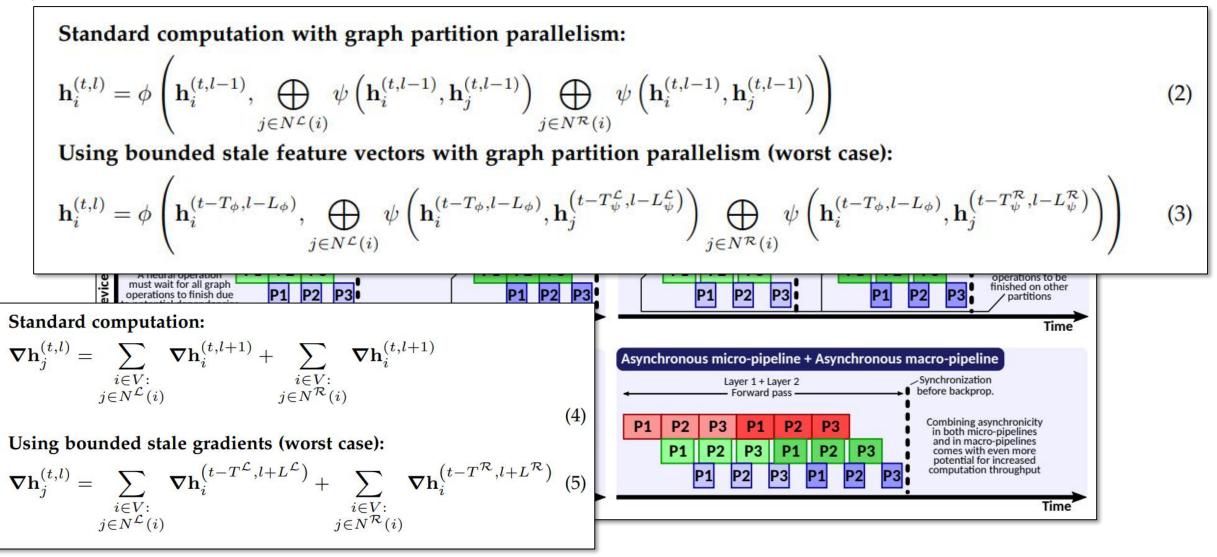
Asynchronous GNNs



A REAL PROPERTY AND A REAL PROPERTY A REAL PRO

... Check the paper 🙂

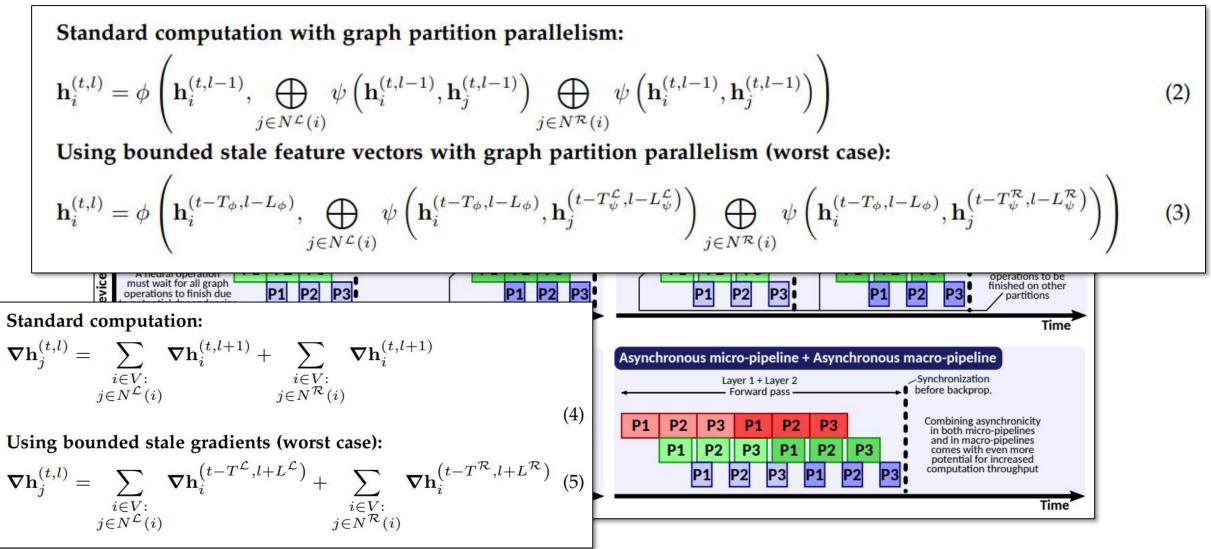
Asynchronous GNNs



a little manufacture that is

... Check the paper 🙂

Asynchronous GNNs



CARLE PARTY CONTRACTOR

... Check the paper 😳 🛛 👔 🕨

Asynchronous GNNs

Carlo and and the

... Check the paper 🕲

Parallel analysis of frameworks and accelerators

... Check the paper 🕲

Parallel analysis of frameworks and accelerators

Reference	Arch.	Ds?	T?	I?	Op?	mp? N	Mp?	Dp?	Dpp	PM	Remarks
[SW] PipeGCN [206]	CPU+GPU		🔳 (fb)	×			K (sh	LC	
[SW] BNS-GCN [205]	GPU		🔳 (fb)				-		sh		
[SW] PaSca [243]	GPU				0	0	0				
[SW] Marius++ [204]	CPU	×	🔳 (mb)	×	🔳 (v)	0	K			LC (SU)	Focus on using disk
[SW] BGL [151]	GPU		🔳 (mb)	×			ĸ		sh		
[SW] DistDGLv2 [248]	CPU+GPU		🗩 (mb)	×			K		sh	—	
[SW] SAR [159]	CPU		🔳 (fb)	×	×	× 3	K				
SW] DeepGalois [105]	CPU		🔳 (fb)	×	0	× 3	ĸ	🗩 (v)	sh	LC (AU)	
SW] DistGNN [155]	CPU		🔳 (fb)		0	× 3	K	🗩 (v)	sh	LC(AU)	
SW] DGCL [54]	GPU	•		×	0	X	K	🔳 (v)		LC (AU)	*Only two servers used.
SW] Seastar [222]	GPU	×		×	🔳 (f)	× x	K	🔳 (v, t)		LC (VC)	
SW] Chakaravarthy [56	6] GPU		🔳 (fb)	×	×	×	K	🗩 (v, sn)	×	
SW] Zhou et al. [249]	CPU	×	×		🔳 (f)	× 3		0		×	
SW] MC-GCN [12]	GPU	•	🔳 (fb)	×	🔳 (f)	X J	K	🔳 (v)		GL	*Multi-GPU within one node.
SW] Dorylus [197]	CPU		🗩 (fb)	×	×	×		🗩 (v)		LC (SAGA)	
SW] Min et al. [156]	GPU		🔳 (mb)	×	0	×		(v)		GL	*Multi-GPU within one node.
SW] GNNAdvisor [215	GPU	×			🗩 (f, s) ×)		0		GL, LC	
SW] AliGraph [255]	CPU				0	X	0			LC (NAU)	
SW] FlexGraph [208]	CPU		🔳 (fb)	×	🔳 (s)	0	K			LC (NAU)	
SW] Kim et al. [125]	CPU+GPU	×	(mb)	×	🔳 (s)	0	K			LC (AU)	
SW] AGL [237]	CPU		(mb)		×					MapReduce	
SW] ROC [117]	CPU+GPU		(fb)		×	×	K			×	
SW] DistDGL [247]	CPU		(mb)	×	0		K			×	
SW] PaGraph [10], [149		•	(mb)	×	0					×	*Multi-GPU within one node.
SW] 2PGraph [240]	GPU		(mb)	×	0		0				
SW] GMLP [242]	GPU		(mb)	×	0					LC	
SW] fuseGNN [64]	GPU	×		×		x	K			LC (AU)*	*Two aggregation schemes are used.
SW] P ³ [81]	CPU+GPU		🔳 (mb)	×			K				*A variant called P-TAGS
SW] QGTC [214]	GPU			×	0				sh	GL	
SW] CAGNET [199]	CPU+GPU		🗩 (fb)		(f. s		K	🗩 (v, e)	sh+rep		
SW] PCGCN [198]	CPU+GPU			×				(e)	sh		
SW] FeatGraph [111]	CPU, GPU				(f, s			(v)	sh	GL	
SW] G ³ [150]	GPU GPU							0	1000	GL	
SW] NeuGraph [153]	GPU			1000		the second of	10 A	(v, e)	sh	LC (SAGA)	
SW] PyTorch-Direct [79		51						(v, e)		GL, LC	
SW] PyG [79]	CPU, GPU	S	*	2.5				(v, e)		GL, LC	*Mini-batching for graph componen
SW] DGL [209]	CPU, GPU		20-10 Los	64						GL, LC	*Mini-batching for graph componen

60

... Check the paper 🕲

Parallel analysis of frameworks and accelerators

Reference	Arch.	Ds?	T?	I?	Op?	mp? Mp?	Dp?	Dpp	PM	Remarks					
[SW] PipeGCN [206]	CPU+GPU		🔳 (fb)			x		sh	LC				-		
[SW] BNS-GCN [205]	GPU		🔳 (fb)			0 ×		sh							
[SW] PaSca [243]	GPU					0 0									
[SW] Marius++ [204]	CPU	×	🔳 (mb			<u> </u>			LC (SU)	Focus on using disk					
[SW] BGL [151]	GPU		🔳 (mb					sh							
[SW] DistDGLv2 [248]	CPU+GPU		(mb			x		sh							
[SW] SAR [159]	CPU		(fb)			××		ah	IC (ALD)						
[SW] DeepGalois [105]	CPU		(fb)			××	(v)	sh sh	LC (AU) LC(AU) 🚱						
[SW] DistGNN [155] [SW] DGCL [54]	CPU GPU	•	(fb)	Ŷ		× × ×	(v)	sn	LC (AU)	*Only two servers use	1				
[SW] Seastar [222]	GPU				🔳 (f)		(v)		LC (VC)	Only two servers used					
[SW] Seastar [222] [SW] Chakaravarthy [56			(fb)												
[SW] Zhou et al. [249]	CPU		× (ID)		(f)	×××	🗩 (v, sn	()	××						
[SW] MC-GCN [12]	GPU		(fb)			xx			GL	*Multi-GPU within on	e node				
[SW] Dorylus [197]	CPU		(fb)					2002-0-000	1	s servers servers servers	aw) - 17097 - 1	9 52732 - 255	C. St. Colores	01302	2010 - 10 miles
[SW] Min et al. [156]	GPU		(mb] ZIPPER		new					🗈 (v, e)		GL, LC
[SW] GNNAdvisor [215					[HW] GCNear	[253]	new	(PIM) X	🗩 (fb) 🗙 🗩		×	🖻 (v, e)	sh	LC (AU)
[SW] AliGraph [255]	CPU				[HW] BlockGN	IN [254]	new	×			×			
[SW] FlexGraph [208]	CPU		(fb)		[HW] TARe [10)3]	new	(ReRAM) X	×		× ©			GL
[SW] Kim et al. [125]	CPU+GPU		(mb		[HW] Rubik [6	2]	new	×	🗩 (mb) 🗙 🔳	0	×	D (v, e)	sh	LC (AU)
[SW] AGL [237]	CPU		(mb			GCNAX		new	×	X		× G			GL
[SW] ROC [117]	CPU+GPU		(fb)			Li et al.	-	new	×						LC (AU)
[SW] DistDGL [247]	CPU		🔳 (mb			GReTA		new						sh	LC (GReTA)
[SW] PaGraph [10], [149] GPU	•	🔳 (mb) ×		GNN-PI			(PIM) ×			1000	$\mathbf{O}(\mathbf{v})$	sh	LC (SAGA)
[SW] 2PGraph [240]	GPU		🔳 (mb] EnGN [1		new					D (v, e)		LC (AU + "feature extraction" stage)
[SW] GMLP [242]	GPU		🔳 (mb) ×] HyGCN		new		×			D (v, e)		LC (AU)
[SW] fuseGNN [64]	GPU	×		×] AWB-GO		new		×			(v, e)		GL
[SW] P ³ [81]	CPU+GPU		🔳 (mb) ×		GRIP [12				× ■0			(v, e)		GL, LC (GReTA)
[SW] QGTC [214]	GPU	×		×				new							
[SW] CAGNET [199]	CPU+GPU		🔳 (fb)] Zhang e							🗩 (v, e)	sn	GL
[SW] PCGCN [198]	CPU+GPU			×] GraphA		new				× ©			GL
[SW] FeatGraph [111]	CPU, GPU		🔳 (fb)		IHW] Auten et	al. [7]	new	×	× 🗩 🖓	0	0 0	0		LC (AU)
[SW] G ³ [150]	GPU				-	0 0	0		OL CL				_		
[SW] NeuGraph [153]	GPU			×		x	🔳 (v, e)	sh	LC (SAGA)						
[SW] PyTorch-Direct [79						0 0	🔳 (v, e)		GL, LC		2				
[SW] PyG [79]	CPU, GPU						🔳 (v, e)		GL, LC	*Mini-batching for gra					
[SW] DGL [209]	CPU, GPU					0			GL, LC	*Mini-batching for gra	ph com	ponent	s		

... Check the paper 😊

Potential for future research – a lot of ideas on how to move on from here

8 CHALLENGES & OPPORTUNITIES

Many of the considered parts of the parallel and distributed GNN landscape were not thoroughly researched. Some were not researched at all. We now list such challenges and opportunities for future research.

ETH zürich

MACIEJ BESTA, TORSTEN HOEFLER, ET AL. Motif Prediction with Graph Neural Networks

Thank you for your attention

Future Computing Laboratory