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Let’s see some recent success stories of GNNs
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EXAMPLE: PROTEIN FOLDING

@ Nature 2021

Given this… …predict this:

…

“In theory, a protein’s amino 
acid sequence should fully 
determine its structure”
(Christian Anfinsen, 1972 
Nobel Prize in Chemistry)

State space: 
order of 10300

Key technique? 

Graph Attention Networks 
(an important GNN model)
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Find a physical layout for this:

…

While 
ensuring…

@ Nature 2021

Physical layout: placement of up to 
millions of (highly heterogeneous) 
elements such as memory banks, 

cores, caches, gates, …

State space: 
order of 102500

Key technique? 

Graph Embeddings / Graph 
Neural Networks + 

Reinforcement Learning
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Example: atom

Example classification task: predict the atom element

Example regression task: predict the atom charge
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Graphs (dependent)

Example: interacting protein

Example classification task: predict the protein type

Example regression task: predict molecular weight
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Dependencies between 
samples in GNNs

Even in independent graph case, 
there are intra-sample dependencies

As we’ll see later, these dependencies make 
parallelism in GNNs much more complex

than in traditional DL
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Pictures taken from: “Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis”, T. Ben-Nun, T. Hoefler, ACM CSUR, 2018
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Why use: Samples are 
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because the whole graph 

does not fit into the 
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of MLP layers in 
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Micro-pipeline 
parallelism

Parallel processing of 
different stages within 

a single GNN layer
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Macro-pipeline 
parallelism

Parallel processing of 
different GNN layers

The data (i.e., the graph structure) is needed at every GNN layer - unlike in 
traditional ANNs, where data is only needed at the pipeline beginning
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Aggregation is the bottleneck in depth in many 
considered models. This is because d (maximum 
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they have fundamentally the same amount of parallelism)
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Local vs. Global Formulations

Some models (A-GNNs, MP-GNNs) do not have known global formulations.
One example is the original Graph Attention (GAT) model

:

:
53



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

Node2Vec:

PPNP:

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

Node2Vec:

PPNP:

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

Node2Vec:

PPNP:

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

As computing powers of A is not 
interleaved with non-linearities (as is the 

case with many local models), the 
increase in work and depth is only 

logarithmic, indicating more parallelism

Node2Vec:

PPNP:

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

As computing powers of A is not 
interleaved with non-linearities (as is the 

case with many local models), the 
increase in work and depth is only 

logarithmic, indicating more parallelism

Still, their representative power may be 
lower, due to the lack of non-linearities

Node2Vec:

PPNP:

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

As computing powers of A is not 
interleaved with non-linearities (as is the 

case with many local models), the 
increase in work and depth is only 

logarithmic, indicating more parallelism

Still, their representative power may be 
lower, due to the lack of non-linearities

Node2Vec:

PPNP:

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

As computing powers of A is not 
interleaved with non-linearities (as is the 

case with many local models), the 
increase in work and depth is only 

logarithmic, indicating more parallelism

Still, their representative power may be 
lower, due to the lack of non-linearities

Node2Vec:

PPNP:

Models with only local formulations: 
potential for better representative power

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

As computing powers of A is not 
interleaved with non-linearities (as is the 

case with many local models), the 
increase in work and depth is only 

logarithmic, indicating more parallelism

Still, their representative power may be 
lower, due to the lack of non-linearities

Node2Vec:

PPNP:

Models with only local formulations: 
potential for better representative power

Models with only global formulations: 
potential for higher performance

54



spcl.inf.ethz.ch

@spcl_eth

Local vs. Global Formulations

Polynomial & Rational models do not have known local formulations (e.g., Node2Vec or PPNP)

They still also offer parallelism: O(log n) 
(Polynomial) and O(log2 n) (Rational) depth

While they have one iteration, making L vanish, 
they require deriving a given power of A

As computing powers of A is not 
interleaved with non-linearities (as is the 

case with many local models), the 
increase in work and depth is only 

logarithmic, indicating more parallelism

Still, their representative power may be 
lower, due to the lack of non-linearities

Node2Vec:

PPNP:

Models with only local formulations: 
potential for better representative power

Models with only global formulations: 
potential for higher performance
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(i.e., what’s also in there)
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More work-depth analyses, plus 
communication & synchronization
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Parallel analysis of frameworks and accelerators
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Potential for future research – a lot of 
ideas on how to move on from here
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