
Using Petri nets within Cyber-

Physical System’s development
IOPT-Tools - Web-based platform for embedded controllers

development based on IOPT Petri nets

Anikó Costa – akc@fct.unl.pt

07/12/2022

KIS Seminar

AGH

2

Outline

 Motivation to move towards model-based development

 Petri nets - a brief overview

 IOPT-Tools framework

 Conclusions

07/12/2022

KIS Seminar

AGH

3

The productivity gap

Reducing the

productivity gap:

One major challenge

in current design of

embedded systems

Design Complexity

Designer Productivity

07/12/2022

KIS Seminar

AGH

4

Verification gap

Designer Productivity

Verification Capability

Another major

concern in current

design of embedded

systems

07/12/2022

KIS Seminar

AGH

5

The performance gap

 More performance always needed (at least wanted)

 Increasing clock frequency is not enough

 Exploiting concurrency and distributed computing and control is

one major option to support improvements

 Although, we need mechanisms to allow robust synchronization,

sharing of resources, mutual exclusion, and so on …

07/12/2022

KIS Seminar

AGH

6

Open issues and challenges

 How to handle design complexity?

 How to reduce the productivity gap?

 How to reduce the verification gap?

 How to cope with the performance gap?

 How to support reliable distributed execution?

 Contribution to the answers:

 Relying more and more on Model-based Development

 Increasing usage of design automation tools (including specification,

simulation/validation, verification, code generation, and test)

07/12/2022

KIS Seminar

AGH

7

Moving to model-based development

 Models are used not only for describing specifications of the

system at earlier phase of development, but also intended to

be used along the whole development process, including

automatic code generation (verification and implementation)

 Start with platform independent specification, “easily”

supporting porting/implementation into specific platforms.

 For that end, an operational model having a precise execution

semantics needs to be selected, allowing usage of the model at

the different stages od the development process.

07/12/2022

KIS Seminar

AGH

8

Underlying development

methodology

 Starting from partial models

 System model by merging

partial models

 System components using model

splitting

 Mapping into specific

implementations platforms

Splitting

into components

...

...

bus

busbus

bridge

NoC

System

model

Mapping into

specific

implementation

platforms

components

Merging of

partial models

...

...

Partial

models

07/12/2022

KIS Seminar

AGH

9

Selection of modeling formalism

 Among those eligible most common formalisms, it is worth

to mention state diagrams, hierarchical and concurrent

state diagrams, statecharts, and Petri nets.

 All of them can have:

 Rigorous computational model

 Precise execution semantics

 Graphical representation

 Formal representation

07/12/2022

KIS Seminar

AGH

10

Petri nets : what ? (I)

 Petri nets allow the modelling of system’s behavior,

starting form the concept of event and condition (close to

the state concept).

 A first characterization can seen Petri nets as a

generalization of state diagrams.

 Graphical formalism, allowing an easy understanding of

system’s behavior (strong point for designers), with formal

representation capabilities (strong point for tool

developers).

07/12/2022

KIS Seminar

AGH

11

Petri nets: what ? (II)

 Bipartite graph, composed by two types of nodes:

 Conditions or places, represented as circles or eclipses;

 Events or transitions, represented by bars, squares or rectangles;

 Directed arcs that can interconnect nodes of different types;

 Model dynamics is associated with transitions, while the places

represents the static component.

07/12/2022

KIS Seminar

AGH

12

Firing rules

 Enabled transitions can be fired

 To be enabled, necessary to comply with enabling pre-conditions (input places marked).

 For some types of Petri nets, also necessary to comply with post-conditions (output places

unmarked).

 Destruction of input tokens and creation of output tokens -> Atomic action

Before ta firing After ta firing

07/12/2022

KIS Seminar

AGH

13

Typical modeling situations:

 Concurrency

 Local evaluation

 Synchronization

 Conflict

Example:

Producer-consumer system model
Consumer 2

Consumer 1

Storage

Producer

07/12/2022

KIS Seminar

AGH

14

Petri net classes

 Low-level Petri nets versus High-level Petri nets

 Place-Transition nets vs Coloured Petri nets

 Safe, bound vs unbound nets

 Autonomous Petri net vs Non-autonomous Petri nets

Operational semantics / implementation issues:

 Synchronous execution

 Asynchronous execution

 Globally asynchronous locally synchronous (GALS)

07/12/2022

KIS Seminar

AGH

15

Petri nets for controller modeling

 Starting with autonomous classes of Petri nets…

 Extremely important to have the possibility to add

dependencies to the environment under control, namely input

and output signals and events.

 In those cases, Petri nets classes become non-autonomous.

 Several classes of non-autonomous Petri nets have been

referred in the literature (some having strong links with

automation systems ex. Silva 1985, Frey & Wagner 2000)

07/12/2022

KIS Seminar

AGH

16

The Input-Output Place-Transition Petri

net class (IOPT nets)

 Extended from the Place/Transition net class with non-autonomous

dependencies:

 Input and output signals, Input and output events

 Transition firing conditioned by input events and guard function constrained

by input signals

 Transition firing can generate output event and/or update output signals

 Output signals can also be associated with places

 Introduction of time domains and communication channels

 Includes transition priorities and Test arcs

IOPT – Input-Output Place-Transition nets

(Syntax)

gateOut = 1 if marking > 0

canLeave>

gateOutOpen

1

[parkOpened == 1]

>left

Input event

Guard (dependent on
input signals)

Output event

Arc weight

leave

Identifiers

Output signal (condition dependent)

07/12/2022

KIS Seminar

AGH

18

The IOPT-Tools – a cloud-based framework

 Petri nets already have a set of supporting tools mostly covering specification

and verification.

 However, Petri nets need additional tools, mostly covering automatic code

generation, to be fully integrated in engineering development flows.

 A contribution using IOPT nets is available at http://gres.uninova.pt/IOPT-Tools/

 IOPT-Tools is an integrated development tool framework covering the whole

phase of embedded controllers development (including automatic code

generation),testing (including simulation and verification) and maintenance

 IOPT-Tools have been extensively validated within engineering courses at NOVA

University of Lisbon (and used by others)

http://gres.uninova.pt/IOPT-Tools/

07/12/2022

KIS Seminar

AGH

19

IOPT-Tools cloud-based framework

 Tools are offered under a cloud-based user interface

 Web User Interface (http://gres.uninova.pt/IOPT-
Tools/)

 AJAX Based IOPT Petri Net Editor

 Simulation

 Remote Debugger

 State Space Generation Tool

 Model-checking using a Query System

 Automatic controller C code generator

 Automatic controller VHDL hardware synthesis

 Automatic IL code generator for PLCs

http://gres.uninova.pt/IOPT-Tools/

07/12/2022

KIS Seminar

AGH

20

Development flow

Design effort
Automatic

code generation

Implementation
platforms

FPGAs

SoCs

CPLDs

ASICs

. . .

PLCs

. . .
Compiler

Synthesizer

(FPGA vendor tools)

IL

code

VHDL
code

Petri net

model

Automatic
code

generation

Editor

Simulation
and state-

space
verification

tools

Supporting

simulation,

verification and

implementation

Intuitive,

platform- and

network-

independent

PCs

Arduino

Raspberry

Other
microcontrollers

. . .

CompilerC code

Plug-ins

Demo vídeo available at https://goo.gl/MxFHti

07/12/2022

KIS Seminar

AGH

21

IOPT-Tools

entry page

07/12/2022

KIS Seminar

AGH

22

IOPT-Tools

Overview

07/12/2022

KIS Seminar

AGH

23

Editor

07/12/2022

KIS Seminar

AGH

24

07/12/2022

KIS Seminar

AGH

25

Space state

generator

07/12/2022

KIS Seminar

AGH

26

07/12/2022

KIS Seminar

AGH

27

Query

editor

Query

results

07/12/2022

KIS Seminar

AGH

28

IOPT-Tools - Simulator

Token player

Timing diagram

An example

Goal:

To model the behaviour of a

two car transportation system;

Cars are synchronized at the

beginning and at the end.

M2

A1 B1

GO

BACKM1

DIR1

A2 B2

DIR2

CAR

CONTRO-

LLER

M2

DIR2

A2

B2

GO

BACK

A1

B1
M1

DIR1

07/12/2022

KIS Seminar

AGH

30

Underlying methodology

System model

Composition

(through addition)

Partitioning

& mapping

Automatic

code

generation

Construction of

partial sub-models

Decomposition

(through splitting)

Concurrent

sub-models

Distributed

components

Prototype

07/12/2022

KIS Seminar

AGH

31

Partial models

Car1 Controller Car2 Controller

With one car

A

B

BACK

GO

S0

S1

S2

S3

M=1

M=1

DIR=right

DIR=left

M=0
M=0

07/12/2022

KIS Seminar

AGH

32

Model composition

Net Merging

07/12/2022

KIS Seminar

AGH

33

Model composition

Node fusion

07/12/2022

KIS Seminar

AGH

34

System model – results of net addition

07/12/2022

KIS Seminar

AGH

35

Space state

generator

07/12/2022

KIS Seminar

AGH

36

Query

editor

Query

results

07/12/2022

KIS Seminar

AGH

37

Component decomposition - Net Splitting

07/12/2022

KIS Seminar

AGH

38

Net splitting

07/12/2022

KIS Seminar

AGH

39

Distributed component

07/12/2022

KIS Seminar

AGH

40

Underlying methodology

System model

Composition

(through addition)

Partitioning

& mapping

Automatic

code

generation

Construction of

partial sub-models

Decomposition

(through splitting)

Concurrent

sub-models

Distributed

components

Prototype

Using

IOPT-Tools

07/12/2022

KIS Seminar

AGH

41

IOPT-Tools – Remote Debugger

 Communication architecture to enable the remote control,

monitoring and debug of embedded system controllers designed

using IOPT Petri nets.

 The architecture adds Internet connectivity capabilities to the

controllers produced by the automatic code generators, enabling

online remote debugging and monitoring using the IOPT simulator

tool.

 Furthermore, it enables the creation of web based graphical user

interfaces for remote operation and the development of distributed

systems where a Petri net model running on a central system

supervises the actions of multiple remote subsystems.

07/12/2022

KIS Seminar

AGH

42

IOPT-Tools –

Remote Debugger

Usage of a minimalist HTTP server,

Implemented directly on the

controller code.

Supporting:

• Status monitoring functions,

• A tracing mechanism with step-by-step execution and breakpoints definition,

• The capability to remotely force the value of input and output signals, used to
implement hardware-in-the-loop solution where the simulator takes full
control of the physical embedded devices.

07/12/2022

KIS Seminar

AGH

43

Application example

An IOPT-based controller receiving signals

from an EEG signals acquisition system and

actuating movements of a quadcopter.

EPOC (by Emotiv) AR.Drone 2.0 (by Parrot)

Controller

Bluetooth Wi-Fi

Application example

EPOC (by Emotiv) AR.Drone 2.0 (by Parrot)

Controller

Bluetooth Wi-Fi

dedicated http server

web browser client

Remote debugger

internet

Adding remote
monitoring and control.

07/12/2022

KIS Seminar

AGH

45

On-line control with remote monitoring

07/12/2022

KIS Seminar

AGH

46

Other application

example

Autonomous navigation of a sailboat

Compass

GPS

Windvane

Sail s

Servomotor

Rudder s

Servomotor

Controller

I2C

Serial

PWM

PWM

PWM

07/12/2022

KIS Seminar

AGH

47

Conclusions

 In the years ahead it is expected the appearance of millions of new

Internet aware embedded devices, both for existing applications and

for applications yet to be discovered.

 This way, the development tools for embedded and cyber-physical

systems will need to offer rapid prototyping as well as the support for

remote operation, monitoring, debug, troubleshoot and diagnose

problems on malfunction devices.

 Model-based development and Petri nets have an important role to

play.

 IOPT-Tools have been successful used to developed embedded

controllers, targeting both software and hardware platforms.

