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e Deep learning 1s widely used due to its superior performance
e However, it suffers from the lack of interpretability (caused by the black-box
character of standard deep neural networks)
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Wrong decisions can be costly and dangerous

( Missouri S&T News and Research

Sf aan ¥ BEMNEWS
After Uber, Tesla incidents, sy sf!“ Tay: Microsoft issues apology
can artificial intelligence be o - over racist chatbot fiasco
= T
trusted? N % Sep 22, 2017

\Apr 10, 2018 \

https://xaitutorial2020.github.io/raw/master/slides/aaai 2020 xai_tutorial.pdf


https://xaitutorial2020.github.io/raw/master/slides/aaai_2020_xai_tutorial.pdf

group of machlne

Explainable Al (post-hoc vs. self-explainable) grm

Iearnlng research

A Hybrid modelling approaches
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The aim 1s to explain the decision of a pre-trained network (could be black-box).

Grad-Cam(s)
Lime

Shap Values
etc

Typically what we can obtain is heat-map of the important features.
Consequently, we only know on which features the model focuses its attention.




Post-hoc methods: Grad-CAM

https://arxiv.org/pdt/1610.02391
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Post-hoc methods: Why should I trust you? — gmuiT)

(a) Husky classified as wolf (b) Explanation

https://arxiv.org/abs/1602.04938
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The aim 1s to construct models which decisions are possible to explain/understand.

e Decision trees
e Prototypical parts models
® b-cos networks

Typical disadvantages: harder to train, there often appears some cost of accuracy,
often restricted to some datasets (prototypes), needs new architecture and therefore
not always possible to fine-tune from existing models (b-cos networks).



https://arxiv.org/pdf/2205.10268

Prototypical parts models

ProtoPNet: This looks like that

Aim of prototypical parts models is to create models that: compare the input to
reference patterns, represented by tralmng data patches.

Leftmost: a test image of a clay-colored sparrow

Second column: same test image, each with a
bounding box generated by our model
-- the content within the bounding box
is considered by our model to look similar
to the prototypical part (same row, third
column) learned by our algorithm

Third column: prototypical parts learned by our
algorithm

Fourth column: source images of the prototypical
parts in the third column

Rightmost column: activation maps indicating how
similar each prototypical part resembles
part of the test bird

g Iearnlng research
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Large number of prototypes (each of them is assigned to only one class)
Similar prototypes of two different classes can be distant in representation
space (here, bright belly with grayish wings and fender)
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e Rymarczyk, Struski, Tabor and Zielinski. ProtoPShare: Prototypical Parts
Sharing for Similarity Discovery in Interpretable Image Classification. In
ACM International Conference on Knowledge Discovery and Data Mining
(KDD), 2021 — arx1iv.org/pdf/2011.14340

e Rymarczyk, Struski, Gorszczak, Lewandowska, Tabor and Zielinski.
Interpretable Image Classification with Differentiable Prototypes
Assignment. In European Conference on Computer Vision (ECCV), 2022 —
arxiv.org/pdf/2112.02902

e Sacha, Jura, Rymarczyk, Struski, Tabor, Zielinski. Interpretability
Benchmark for Evaluating Spatial Misalignment of Prototypical Parts
Explanations. National Conference of the American Association for Artificial
Intelligence (AAAI), 2024 — arxiv.org/pdf/2308.08162
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In contrast to existing methods, they:
e share prototypes between classes
increase model interpretability
can be used to find similarities between classes
focus the model on salient features

interpretability benchmarks
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Prototypical parts models gmium
Pros lcarning h
e we can really (hope to) understand the decision of prototypical networks
(contrary to Post-hoc methods where we have only attention of the network!)
e we have disentangled the final decision into simpler atomic components,
where each can be easier to understand.
Cons
e we have to construct new architecture and loss functions
e the training can be nontrivial
® since prototypes look at the local differences, 1t works well for homogeneous
classes (birds/dogs/cars) but does not work well on ImageNet since the
classes or not mutations of some one main general class
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XAI world 1s broken! gmum
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Post-hoc methods
e We cannot explain the reasons behind the decisions of convolutional or
transformer networks. We can only see where the network focuses its
attention.

Inherently explained models
e To understand the decisions we need to construct special
networks/architectures and loss functions.

15



InfoDisent: hybrid model gMmuim
e We want to understand decisions (representation space) of pretrained
convolutional or transformer networks.
e Motivated by prototypical parts networks,
we aim to disentangle final decisions into
understandable atomic components.

e Each atomic component will be
represented by (prototypical)

channel in the representation layer. "™
e Positive reasoning.

rototypes

https://arxiv.org/pdf/2409.10329 16
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Research hypothesis: channels are not
informative
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The NN does not have any incentive to disentangle the information between
channels (disentanglement means that the channels give information which 1s
independent).

Let 7 denote the input image pushed through NN to the representation layer (last
layer before the head), with & channels. Standard classification head 1s given by

class(l)=softmax A(avg pool(l)),

where avg pool is taken over channels.

17
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Research hypothesis: channels are not
informative grnurm

Observation: operation avg pool (applied channelwise) 1s commutative
operation with matrix operations applied pixelwise:

avg pool( Upixelwise]):U avg pool(l).

Consequently: For any invertible matrix U we have the equality

softmax A avg pool(l) = softmax(AU") avg pool(U

pixelwisel) )

This means that the one can mix the channels arbitrarily with invertible matrix,
and unmix in the last linear layer, and obtain exactly the same result.

18
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Since we agree, that the channels contain entangled/mixed information, the
appears to questions:
e which class of invertible matrices use for unmixing?
e how to devise an unmixing/disentangling mechanics? In other words how to
motivate the network so that it would make the channels independent?
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Unmixing by orthogonal matrices gmum

As we have shown, we can theoretically unmix by any invertible matrix. We have
decided to restrict to orthogonal matrices (isometries), as they do not change the
innerlying scalar product. Recall that a square matrix U is orthogonal if
U'U=U0U"=I.

We even restrict it further to those which do not change orientation (det=1).
Parametrization — an arbitrary orthogonal matrix with def=1 is given by matrix
exponential of skew symmetric matrix. Thus

U=exp(A4-A?),

where A4 1s an arbitrary square matrix.
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In the standard classification head we have the avg pool operations, which
aggregates/uses information from all pixels in the given channel.

Sparse Pooling Layer: We restrict this and construct a new pooling mechanism
called mx pool which in the pooling will have access to only two pixels, the
largest positive and smallest negative.

mx_pool(K)=max(RelLu(K)) - max(ReLu(-K)).

21



group of machine

Final model gmum

learning research

Information Bottleneck

Orthogonal

Oulput
Transform

Logits

FC Layer with
Positive Values
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1
Frozen Backbone ! Pooling Important Features

Figure 2: Our image classification interpretation model, InfoDisent, features three main components: a pre-trained backbone,
a pooling layer for key features, and a fully connected layer. The CNN/transformer backbone, with frozen weights, is not
further trained. The pooling layer extracts features from the last transformer or convolutional layer and identifies key positive
and negative features. These are then combined into a dense vector, which is processed by a fully connected linear layer with
nonnegative entries in the final stage.
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To visualize the decision we show the patch on the input image which
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corresponds to the greatest posmve pixel in the representation space. g
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Results

Dataset

Model
CUB-200-2011  Cars
ResNet-34 82.4% 92.6%
« b InfoDisent (ours) 83.5% 92.8%
oL T T
5 ProtoPNet 79.2% 86.1%
% ProtoPShare 74.7% 86.4%
& ProtoPool 80.3% 89.3%
ST-ProtoPNet 83.5% 91.4%
TesNet 82.7% 90.9%
o ResNet-50 83.2% 93.1%
‘2 L InfoDisent (ours) 83.0% 92.9%
B e v s e e e e Yo i o Mt W St it it G S B e S Nt St
% ProtoPool - 88.9%
& ProtoTree - 86.6%
PIP-Net 82.0% 86.5%
DenseNet-121 81.8% 92.1%
5 Ls InfoDisent (ours) 82.6% 92.7%
3 ProtoPNet 79.2% 86.8%
S ProtoPShare 74.7% 84.8%
g ProtoPool 73.6% 86.4%
ST-ProtoPNet 85.4% 92.3%
TesNet 84.8% 92.0%
% ConvNeXt-Tiny 83.8% 91.0%
Z L InfoDisent (ours) 84.1% 90.2%
g SN L T
S PIP-Net 84.3% 88.2%

Table 1: Accuracy comparison of interpretability models
using standard CNN architectures (utilized in explainable
models) trained on cropped bird images of CUB-200-2011,
and Stanford Cars (Cars). Our approach demonstrates supe-
rior performance across nearly all the datasets and models
considered. For each dataset and backbone, we boldface the
best result in the class of interpretable models.

Model Dataset
CUB-200-2011 Dogs
., ResNet-34 76.0% 84.5%
g L InfoDisent (ours) 78.3% 83.9%
% ProtoPNet 74.1% 76.1%
& ST-ProtoPNet 78.2% 83.4%
TesNet 76.5% 81.2%
 ResNet-50 78.7% 87.4%
g L InfoDisent (ours)  79.5% 86.6%
% ProtoPNet 84.8% 78.1%
& ST-ProtoPNet 88.0% 83.3%
TesNet 87.3% 85.7%
S DenseNet-121 78.2% 84.1%
< LInfoDisent (ours)  80.6% 83.8%
S ProtoPNet 76.6% 75.4%
g ST-ProtoPNet 81.8% 82.9%
TesNet 80.9% 82.1%

Table 2: Classification accuracy on full CUB-200-2011, and
Stanford Dogs datasets by competing approaches using dif-
ferent CNN backbones. For each dataset and backbone, we
boldface the best result in the class of interpretable models.

CNN

Model  ACC

Transformer

Model  ACC

ResNet-34 73.3%
L InfoDisent 64.1%

ResNet-50 76.1%
L InfoDisent 67.8%

DenseNet-121 74.4%
L InfoDisent 66.6%

ConvNeXt-L  84.1%
L InfoDisent 82.8%

ViT-B/16 81.1%
L InfoDisent 79.2%

Swin-S 83.4%
L InfoDisent 81.4%
Max Vit 83.4%

L InfoDisent 83.3%

Table 3: Classification accuracy (ACC) on ImageNet dataset
by competing approaches using different CNN backbones.
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Thank you!

25



